Enrhifo
\frac{1285000\sqrt{2}+1436000}{36481}\approx 89.176953144
Rhannu
Copïo i clipfwrdd
\frac{2\left(0.8+\sqrt{2}\right)}{0.04\left(\sqrt{2}\right)^{2}-0.024\sqrt{2}+0.0036}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.2\sqrt{2}-0.06\right)^{2}.
\frac{2\left(0.8+\sqrt{2}\right)}{0.04\times 2-0.024\sqrt{2}+0.0036}
Sgwâr \sqrt{2} yw 2.
\frac{2\left(0.8+\sqrt{2}\right)}{0.08-0.024\sqrt{2}+0.0036}
Lluosi 0.04 a 2 i gael 0.08.
\frac{2\left(0.8+\sqrt{2}\right)}{0.0836-0.024\sqrt{2}}
Adio 0.08 a 0.0036 i gael 0.0836.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{\left(0.0836-0.024\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}
Mae'n rhesymoli enwadur \frac{2\left(0.8+\sqrt{2}\right)}{0.0836-0.024\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â 0.0836+0.024\sqrt{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.0836^{2}-\left(-0.024\sqrt{2}\right)^{2}}
Ystyriwch \left(0.0836-0.024\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-\left(-0.024\sqrt{2}\right)^{2}}
Cyfrifo 0.0836 i bŵer 2 a chael 0.00698896.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-\left(-0.024\right)^{2}\left(\sqrt{2}\right)^{2}}
Ehangu \left(-0.024\sqrt{2}\right)^{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.000576\left(\sqrt{2}\right)^{2}}
Cyfrifo -0.024 i bŵer 2 a chael 0.000576.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.000576\times 2}
Sgwâr \sqrt{2} yw 2.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.001152}
Lluosi 0.000576 a 2 i gael 0.001152.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00583696}
Tynnu 0.001152 o 0.00698896 i gael 0.00583696.
\frac{12500000}{36481}\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)
Rhannu 2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right) â 0.00583696 i gael \frac{12500000}{36481}\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right).
\left(\frac{10000000}{36481}+\frac{12500000}{36481}\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)
Defnyddio’r briodwedd ddosbarthu i luosi \frac{12500000}{36481} â 0.8+\sqrt{2}.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{300000}{36481}\left(\sqrt{2}\right)^{2}
Defnyddio’r briodwedd ddosbarthu i luosi \frac{10000000}{36481}+\frac{12500000}{36481}\sqrt{2} â 0.0836+0.024\sqrt{2} a chyfuno termau tebyg.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{300000}{36481}\times 2
Sgwâr \sqrt{2} yw 2.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{600000}{36481}
Lluosi \frac{300000}{36481} a 2 i gael \frac{600000}{36481}.
\frac{1436000}{36481}+\frac{1285000}{36481}\sqrt{2}
Adio \frac{836000}{36481} a \frac{600000}{36481} i gael \frac{1436000}{36481}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}