Enrhifo
\frac{3x+2}{x\left(x+1\right)}
Gwahaniaethu w.r.t. x
-\frac{3x^{2}+4x+2}{\left(x\left(x+1\right)\right)^{2}}
Graff
Rhannu
Copïo i clipfwrdd
\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{x}{x\left(x+1\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin x a x+1 yw x\left(x+1\right). Lluoswch \frac{2}{x} â \frac{x+1}{x+1}. Lluoswch \frac{1}{x+1} â \frac{x}{x}.
\frac{2\left(x+1\right)+x}{x\left(x+1\right)}
Gan fod gan \frac{2\left(x+1\right)}{x\left(x+1\right)} a \frac{x}{x\left(x+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{2x+2+x}{x\left(x+1\right)}
Gwnewch y gwaith lluosi yn 2\left(x+1\right)+x.
\frac{3x+2}{x\left(x+1\right)}
Cyfuno termau tebyg yn 2x+2+x.
\frac{3x+2}{x^{2}+x}
Ehangu x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{x}{x\left(x+1\right)})
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin x a x+1 yw x\left(x+1\right). Lluoswch \frac{2}{x} â \frac{x+1}{x+1}. Lluoswch \frac{1}{x+1} â \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+x}{x\left(x+1\right)})
Gan fod gan \frac{2\left(x+1\right)}{x\left(x+1\right)} a \frac{x}{x\left(x+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+x}{x\left(x+1\right)})
Gwnewch y gwaith lluosi yn 2\left(x+1\right)+x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+2}{x\left(x+1\right)})
Cyfuno termau tebyg yn 2x+2+x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+2}{x^{2}+x})
Defnyddio’r briodwedd ddosbarthu i luosi x â x+1.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+2)-\left(3x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{1-1}-\left(3x^{1}+2\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{0}-\left(3x^{1}+2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Symleiddio.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}+2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Lluoswch x^{2}+x^{1} â 3x^{0}.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}\times 2x^{1}+3x^{1}x^{0}+2\times 2x^{1}+2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Lluoswch 3x^{1}+2 â 2x^{1}+x^{0}.
\frac{3x^{2}+3x^{1}-\left(3\times 2x^{1+1}+3x^{1}+2\times 2x^{1}+2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
I luosi pwerau sy’n rhannu’r un sail, ychwanegwch eu hesbonyddion.
\frac{3x^{2}+3x^{1}-\left(6x^{2}+3x^{1}+4x^{1}+2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Symleiddio.
\frac{-3x^{2}-4x^{1}-2x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Cyfuno termau sydd yr un peth.
\frac{-3x^{2}-4x-2x^{0}}{\left(x^{2}+x\right)^{2}}
Ar gyfer unrhyw derm t, t^{1}=t.
\frac{-3x^{2}-4x-2}{\left(x^{2}+x\right)^{2}}
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}