Enrhifo
\frac{\sqrt{5}\left(\sqrt{15}+1\right)}{5}\approx 2.179264403
Rhannu
Copïo i clipfwrdd
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right)}
Mae'n rhesymoli enwadur \frac{14}{5\sqrt{3}-\sqrt{5}} drwy luosi'r rhifiadur a'r enwadur â 5\sqrt{3}+\sqrt{5}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Ystyriwch \left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Ehangu \left(5\sqrt{3}\right)^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Cyfrifo 5 i bŵer 2 a chael 25.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\times 3-\left(\sqrt{5}\right)^{2}}
Sgwâr \sqrt{3} yw 3.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-\left(\sqrt{5}\right)^{2}}
Lluosi 25 a 3 i gael 75.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-5}
Sgwâr \sqrt{5} yw 5.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{70}
Tynnu 5 o 75 i gael 70.
\frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right)
Rhannu 14\left(5\sqrt{3}+\sqrt{5}\right) â 70 i gael \frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right).
\frac{1}{5}\times 5\sqrt{3}+\frac{1}{5}\sqrt{5}
Defnyddio’r briodwedd ddosbarthu i luosi \frac{1}{5} â 5\sqrt{3}+\sqrt{5}.
\sqrt{3}+\frac{1}{5}\sqrt{5}
Canslo 5 a 5.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}