Datrys ar gyfer x
x = \frac{\sqrt{160221897609} - 10397}{25000} \approx 15.595211036
x=\frac{-\sqrt{160221897609}-10397}{25000}\approx -16.426971036
Graff
Cwis
Quadratic Equation
5 problemau tebyg i:
\frac{ { x }^{ 2 } }{ 308-x } = 83176 \times { 10 }^{ -5 }
Rhannu
Copïo i clipfwrdd
x^{2}=83176\times 10^{-5}\left(-x+308\right)
All y newidyn x ddim fod yn hafal i 308 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â -x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Cyfrifo 10 i bŵer -5 a chael \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Lluosi 83176 a \frac{1}{100000} i gael \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Defnyddio’r briodwedd ddosbarthu i luosi \frac{10397}{12500} â -x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Ychwanegu \frac{10397}{12500}x at y ddwy ochr.
x^{2}+\frac{10397}{12500}x-\frac{800569}{3125}=0
Tynnu \frac{800569}{3125} o'r ddwy ochr.
x=\frac{-\frac{10397}{12500}±\sqrt{\left(\frac{10397}{12500}\right)^{2}-4\left(-\frac{800569}{3125}\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, \frac{10397}{12500} am b, a -\frac{800569}{3125} am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}-4\left(-\frac{800569}{3125}\right)}}{2}
Sgwariwch \frac{10397}{12500} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}+\frac{3202276}{3125}}}{2}
Lluoswch -4 â -\frac{800569}{3125}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{160221897609}{156250000}}}{2}
Adio \frac{108097609}{156250000} at \frac{3202276}{3125} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2}
Cymryd isradd \frac{160221897609}{156250000}.
x=\frac{\sqrt{160221897609}-10397}{2\times 12500}
Datryswch yr hafaliad x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} pan fydd ± yn plws. Adio -\frac{10397}{12500} at \frac{\sqrt{160221897609}}{12500}.
x=\frac{\sqrt{160221897609}-10397}{25000}
Rhannwch \frac{-10397+\sqrt{160221897609}}{12500} â 2.
x=\frac{-\sqrt{160221897609}-10397}{2\times 12500}
Datryswch yr hafaliad x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} pan fydd ± yn minws. Tynnu \frac{\sqrt{160221897609}}{12500} o -\frac{10397}{12500}.
x=\frac{-\sqrt{160221897609}-10397}{25000}
Rhannwch \frac{-10397-\sqrt{160221897609}}{12500} â 2.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}=83176\times 10^{-5}\left(-x+308\right)
All y newidyn x ddim fod yn hafal i 308 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â -x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Cyfrifo 10 i bŵer -5 a chael \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Lluosi 83176 a \frac{1}{100000} i gael \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Defnyddio’r briodwedd ddosbarthu i luosi \frac{10397}{12500} â -x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Ychwanegu \frac{10397}{12500}x at y ddwy ochr.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\frac{800569}{3125}+\left(\frac{10397}{25000}\right)^{2}
Rhannwch \frac{10397}{12500}, cyfernod y term x, â 2 i gael \frac{10397}{25000}. Yna ychwanegwch sgwâr \frac{10397}{25000} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{800569}{3125}+\frac{108097609}{625000000}
Sgwariwch \frac{10397}{25000} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{160221897609}{625000000}
Adio \frac{800569}{3125} at \frac{108097609}{625000000} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{160221897609}{625000000}
Ffactora x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{160221897609}{625000000}}
Cymrwch isradd dwy ochr yr hafaliad.
x+\frac{10397}{25000}=\frac{\sqrt{160221897609}}{25000} x+\frac{10397}{25000}=-\frac{\sqrt{160221897609}}{25000}
Symleiddio.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Tynnu \frac{10397}{25000} o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}