Enrhifo
\sqrt{3}\approx 1.732050808
Ehangu
\sqrt{3} = 1.732050808
Rhannu
Copïo i clipfwrdd
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Cyfuno \sqrt{3} a \sqrt{3} i gael 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tynnu 1 o 1 i gael 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ehangu \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Sgwâr \sqrt{3} yw 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Lluosi 4 a 3 i gael 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Sgwâr \sqrt{3} yw 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Adio 3 a 1 i gael 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Sgwâr \sqrt{3} yw 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Adio 3 a 1 i gael 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
I ddod o hyd i wrthwyneb 4-2\sqrt{3}, dewch o hyd i wrthwyneb pob term.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Tynnu 4 o 4 i gael 0.
\frac{12}{4\sqrt{3}}
Cyfuno 2\sqrt{3} a 2\sqrt{3} i gael 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Mae'n rhesymoli enwadur \frac{12}{4\sqrt{3}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Sgwâr \sqrt{3} yw 3.
\sqrt{3}
Canslo 3\times 4 yn y rhifiadur a'r enwadur.
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Cyfuno \sqrt{3} a \sqrt{3} i gael 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tynnu 1 o 1 i gael 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ehangu \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Sgwâr \sqrt{3} yw 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Lluosi 4 a 3 i gael 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Sgwâr \sqrt{3} yw 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Adio 3 a 1 i gael 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Sgwâr \sqrt{3} yw 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Adio 3 a 1 i gael 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
I ddod o hyd i wrthwyneb 4-2\sqrt{3}, dewch o hyd i wrthwyneb pob term.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Tynnu 4 o 4 i gael 0.
\frac{12}{4\sqrt{3}}
Cyfuno 2\sqrt{3} a 2\sqrt{3} i gael 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Mae'n rhesymoli enwadur \frac{12}{4\sqrt{3}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Sgwâr \sqrt{3} yw 3.
\sqrt{3}
Canslo 3\times 4 yn y rhifiadur a'r enwadur.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}