Datrys ar gyfer s
s=-\frac{15\left(x-208\right)}{x^{2}}
x\neq 0
Datrys ar gyfer x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\\x=208\text{, }&s=0\end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\text{ and }s\geq -\frac{15}{832}\\x=208\text{, }&s=0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
4x\times 3+3x\times 4+2xxs+12\left(\frac{x}{4}-8\right)\times 2=6048
Lluoswch ddwy ochr yr hafaliad wrth 12, lluoswm cyffredin lleiaf 3,4,6.
4x\times 3+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Lluosi x a x i gael x^{2}.
12x+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Lluosi 4 a 3 i gael 12.
12x+12x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Lluosi 3 a 4 i gael 12.
24x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Cyfuno 12x a 12x i gael 24x.
24x+2x^{2}s+24\left(\frac{x}{4}-8\right)=6048
Lluosi 12 a 2 i gael 24.
24x+2x^{2}s+24\times \frac{x}{4}-192=6048
Defnyddio’r briodwedd ddosbarthu i luosi 24 â \frac{x}{4}-8.
24x+2x^{2}s+6x-192=6048
Diddymwch y ffactor cyffredin mwyaf 4 yn 24 a 4.
30x+2x^{2}s-192=6048
Cyfuno 24x a 6x i gael 30x.
2x^{2}s-192=6048-30x
Tynnu 30x o'r ddwy ochr.
2x^{2}s=6048-30x+192
Ychwanegu 192 at y ddwy ochr.
2x^{2}s=6240-30x
Adio 6048 a 192 i gael 6240.
\frac{2x^{2}s}{2x^{2}}=\frac{6240-30x}{2x^{2}}
Rhannu’r ddwy ochr â 2x^{2}.
s=\frac{6240-30x}{2x^{2}}
Mae rhannu â 2x^{2} yn dad-wneud lluosi â 2x^{2}.
s=\frac{15\left(208-x\right)}{x^{2}}
Rhannwch 6240-30x â 2x^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}