Enrhifo
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Ffactor
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Rhannu
Copïo i clipfwrdd
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Ffactora x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(x+y\right)\left(x-y\right) a x+y yw \left(x+y\right)\left(x-y\right). Lluoswch \frac{x}{x+y} â \frac{x-y}{x-y}.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Gan fod gan \frac{x^{2}}{\left(x+y\right)\left(x-y\right)} a \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Gwnewch y gwaith lluosi yn x^{2}-x\left(x-y\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Cyfuno termau tebyg yn x^{2}-x^{2}+xy.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Ffactora 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(x+y\right)\left(x-y\right) a 2\left(x-y\right) yw 2\left(x+y\right)\left(x-y\right). Lluoswch \frac{xy}{\left(x+y\right)\left(x-y\right)} â \frac{2}{2}. Lluoswch \frac{y}{2\left(x-y\right)} â \frac{x+y}{x+y}.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Gan fod gan \frac{2xy}{2\left(x+y\right)\left(x-y\right)} a \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Gwnewch y gwaith lluosi yn 2xy+y\left(x+y\right).
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Cyfuno termau tebyg yn 2xy+xy+y^{2}.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
Ffactora 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
Gan fod gan \frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} a \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
Cyfuno termau tebyg yn y^{2}+3xy-y^{2}.
\frac{3xy}{2x^{2}-2y^{2}}
Ehangu 2\left(x+y\right)\left(x-y\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}