Datrys ar gyfer x
x = \frac{20000 \sqrt{950625000130} + 32500000000}{12999999999} \approx 4
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}\approx 1
Graff
Rhannu
Copïo i clipfwrdd
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
All y newidyn x ddim fod yn hafal i unrhyw un o’r gwerthoedd 1,4 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â \left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Cyfrifo 10 i bŵer 9 a chael 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Lluosi 13 a 1000000000 i gael 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Defnyddio’r briodwedd ddosbarthu i luosi 13000000000 â x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Defnyddio’r briodwedd ddosbarthu i luosi 13000000000x-52000000000 â x-1 a chyfuno termau tebyg.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Tynnu 13000000000x^{2} o'r ddwy ochr.
-12999999999x^{2}=-65000000000x+52000000000
Cyfuno x^{2} a -13000000000x^{2} i gael -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Ychwanegu 65000000000x at y ddwy ochr.
-12999999999x^{2}+65000000000x-52000000000=0
Tynnu 52000000000 o'r ddwy ochr.
x=\frac{-65000000000±\sqrt{65000000000^{2}-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch -12999999999 am a, 65000000000 am b, a -52000000000 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65000000000±\sqrt{4225000000000000000000-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Sgwâr 65000000000.
x=\frac{-65000000000±\sqrt{4225000000000000000000+51999999996\left(-52000000000\right)}}{2\left(-12999999999\right)}
Lluoswch -4 â -12999999999.
x=\frac{-65000000000±\sqrt{4225000000000000000000-2703999999792000000000}}{2\left(-12999999999\right)}
Lluoswch 51999999996 â -52000000000.
x=\frac{-65000000000±\sqrt{1521000000208000000000}}{2\left(-12999999999\right)}
Adio 4225000000000000000000 at -2703999999792000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{2\left(-12999999999\right)}
Cymryd isradd 1521000000208000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998}
Lluoswch 2 â -12999999999.
x=\frac{40000\sqrt{950625000130}-65000000000}{-25999999998}
Datryswch yr hafaliad x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} pan fydd ± yn plws. Adio -65000000000 at 40000\sqrt{950625000130}.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Rhannwch -65000000000+40000\sqrt{950625000130} â -25999999998.
x=\frac{-40000\sqrt{950625000130}-65000000000}{-25999999998}
Datryswch yr hafaliad x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} pan fydd ± yn minws. Tynnu 40000\sqrt{950625000130} o -65000000000.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
Rhannwch -65000000000-40000\sqrt{950625000130} â -25999999998.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999} x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
All y newidyn x ddim fod yn hafal i unrhyw un o’r gwerthoedd 1,4 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â \left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Cyfrifo 10 i bŵer 9 a chael 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Lluosi 13 a 1000000000 i gael 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Defnyddio’r briodwedd ddosbarthu i luosi 13000000000 â x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Defnyddio’r briodwedd ddosbarthu i luosi 13000000000x-52000000000 â x-1 a chyfuno termau tebyg.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Tynnu 13000000000x^{2} o'r ddwy ochr.
-12999999999x^{2}=-65000000000x+52000000000
Cyfuno x^{2} a -13000000000x^{2} i gael -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Ychwanegu 65000000000x at y ddwy ochr.
\frac{-12999999999x^{2}+65000000000x}{-12999999999}=\frac{52000000000}{-12999999999}
Rhannu’r ddwy ochr â -12999999999.
x^{2}+\frac{65000000000}{-12999999999}x=\frac{52000000000}{-12999999999}
Mae rhannu â -12999999999 yn dad-wneud lluosi â -12999999999.
x^{2}-\frac{65000000000}{12999999999}x=\frac{52000000000}{-12999999999}
Rhannwch 65000000000 â -12999999999.
x^{2}-\frac{65000000000}{12999999999}x=-\frac{52000000000}{12999999999}
Rhannwch 52000000000 â -12999999999.
x^{2}-\frac{65000000000}{12999999999}x+\left(-\frac{32500000000}{12999999999}\right)^{2}=-\frac{52000000000}{12999999999}+\left(-\frac{32500000000}{12999999999}\right)^{2}
Rhannwch -\frac{65000000000}{12999999999}, cyfernod y term x, â 2 i gael -\frac{32500000000}{12999999999}. Yna ychwanegwch sgwâr -\frac{32500000000}{12999999999} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=-\frac{52000000000}{12999999999}+\frac{1056250000000000000000}{168999999974000000001}
Sgwariwch -\frac{32500000000}{12999999999} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=\frac{380250000052000000000}{168999999974000000001}
Adio -\frac{52000000000}{12999999999} at \frac{1056250000000000000000}{168999999974000000001} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(x-\frac{32500000000}{12999999999}\right)^{2}=\frac{380250000052000000000}{168999999974000000001}
Ffactora x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32500000000}{12999999999}\right)^{2}}=\sqrt{\frac{380250000052000000000}{168999999974000000001}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{32500000000}{12999999999}=\frac{20000\sqrt{950625000130}}{12999999999} x-\frac{32500000000}{12999999999}=-\frac{20000\sqrt{950625000130}}{12999999999}
Symleiddio.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999} x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Adio \frac{32500000000}{12999999999} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}