Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Gwahaniaethu w.r.t. y
Tick mark Image

Rhannu

\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Rhannwch \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} â \frac{x}{\left(x+z\right)^{2}-y^{2}} drwy luosi \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} â chilydd \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Canslo x\left(x+y+z\right)\left(x+y-z\right) yn y rhifiadur a'r enwadur.
\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\left(x-y+z\right)\times \frac{y}{x-y+z}
Canslo x-y-z yn y rhifiadur a'r enwadur.
y
Canslo x-y+z a x-y+z.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Rhannwch \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} â \frac{x}{\left(x+z\right)^{2}-y^{2}} drwy luosi \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} â chilydd \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Canslo x\left(x+y+z\right)\left(x+y-z\right) yn y rhifiadur a'r enwadur.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)})
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y}{x-y+z})
Canslo x-y-z yn y rhifiadur a'r enwadur.
\frac{\mathrm{d}}{\mathrm{d}y}(y)
Canslo x-y+z a x-y+z.
y^{1-1}
Deilliad ax^{n} yw nax^{n-1}.
y^{0}
Tynnu 1 o 1.
1
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.