Datrys ar gyfer x
x=-1
x=0
Graff
Rhannu
Copïo i clipfwrdd
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Lluoswch ddwy ochr yr hafaliad wrth 12, lluoswm cyffredin lleiaf 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
Defnyddio’r briodwedd ddosbarthu i luosi 4 â x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
Adio 8 a 7 i gael 15.
4x^{2}+15+x=12+3x^{2}+3
Defnyddio’r briodwedd ddosbarthu i luosi 3 â x^{2}+1.
4x^{2}+15+x=15+3x^{2}
Adio 12 a 3 i gael 15.
4x^{2}+15+x-15=3x^{2}
Tynnu 15 o'r ddwy ochr.
4x^{2}+x=3x^{2}
Tynnu 15 o 15 i gael 0.
4x^{2}+x-3x^{2}=0
Tynnu 3x^{2} o'r ddwy ochr.
x^{2}+x=0
Cyfuno 4x^{2} a -3x^{2} i gael x^{2}.
x\left(x+1\right)=0
Ffactora allan x.
x=0 x=-1
I ddod o hyd i atebion hafaliad, datryswch x=0 a x+1=0.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Lluoswch ddwy ochr yr hafaliad wrth 12, lluoswm cyffredin lleiaf 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
Defnyddio’r briodwedd ddosbarthu i luosi 4 â x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
Adio 8 a 7 i gael 15.
4x^{2}+15+x=12+3x^{2}+3
Defnyddio’r briodwedd ddosbarthu i luosi 3 â x^{2}+1.
4x^{2}+15+x=15+3x^{2}
Adio 12 a 3 i gael 15.
4x^{2}+15+x-15=3x^{2}
Tynnu 15 o'r ddwy ochr.
4x^{2}+x=3x^{2}
Tynnu 15 o 15 i gael 0.
4x^{2}+x-3x^{2}=0
Tynnu 3x^{2} o'r ddwy ochr.
x^{2}+x=0
Cyfuno 4x^{2} a -3x^{2} i gael x^{2}.
x=\frac{-1±\sqrt{1^{2}}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 1 am b, a 0 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2}
Cymryd isradd 1^{2}.
x=\frac{0}{2}
Datryswch yr hafaliad x=\frac{-1±1}{2} pan fydd ± yn plws. Adio -1 at 1.
x=0
Rhannwch 0 â 2.
x=-\frac{2}{2}
Datryswch yr hafaliad x=\frac{-1±1}{2} pan fydd ± yn minws. Tynnu 1 o -1.
x=-1
Rhannwch -2 â 2.
x=0 x=-1
Mae’r hafaliad wedi’i ddatrys nawr.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Lluoswch ddwy ochr yr hafaliad wrth 12, lluoswm cyffredin lleiaf 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
Defnyddio’r briodwedd ddosbarthu i luosi 4 â x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
Adio 8 a 7 i gael 15.
4x^{2}+15+x=12+3x^{2}+3
Defnyddio’r briodwedd ddosbarthu i luosi 3 â x^{2}+1.
4x^{2}+15+x=15+3x^{2}
Adio 12 a 3 i gael 15.
4x^{2}+15+x-15=3x^{2}
Tynnu 15 o'r ddwy ochr.
4x^{2}+x=3x^{2}
Tynnu 15 o 15 i gael 0.
4x^{2}+x-3x^{2}=0
Tynnu 3x^{2} o'r ddwy ochr.
x^{2}+x=0
Cyfuno 4x^{2} a -3x^{2} i gael x^{2}.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Rhannwch 1, cyfernod y term x, â 2 i gael \frac{1}{2}. Yna ychwanegwch sgwâr \frac{1}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Sgwariwch \frac{1}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
Ffactora x^{2}+x+\frac{1}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Symleiddio.
x=0 x=-1
Tynnu \frac{1}{2} o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}