Datrys ar gyfer x (complex solution)
x=\frac{\sqrt{225-128y^{2}}+15}{32}
x=\frac{-\sqrt{225-128y^{2}}+15}{32}
Datrys ar gyfer y (complex solution)
y=-\frac{i\sqrt{2x}\sqrt{16x-15}}{2}
y=\frac{i\sqrt{x}\sqrt{32x-30}}{2}
Datrys ar gyfer x
x=\frac{\sqrt{225-128y^{2}}+15}{32}
x=\frac{-\sqrt{225-128y^{2}}+15}{32}\text{, }|y|\leq \frac{15\sqrt{2}}{16}
Datrys ar gyfer y
y=\frac{\sqrt{2x\left(15-16x\right)}}{2}
y=-\frac{\sqrt{2x\left(15-16x\right)}}{2}\text{, }x\geq 0\text{ and }x\leq \frac{15}{16}
Graff
Rhannu
Copïo i clipfwrdd
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}