Enrhifo
\frac{1}{b^{2}+1}
Ehangu
\frac{1}{b^{2}+1}
Rhannu
Copïo i clipfwrdd
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Ffactora b^{4}-1. Ffactora 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) a \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) yw \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Lluoswch \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} â \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Gan fod gan \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} a \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Gwnewch y gwaith lluosi yn b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Cyfuno termau tebyg yn b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Canslo \left(b-1\right)\left(b+1\right) yn y rhifiadur a'r enwadur.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Ffactora b^{4}-1. Ffactora 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) a \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) yw \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Lluoswch \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} â \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Gan fod gan \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} a \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Gwnewch y gwaith lluosi yn b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Cyfuno termau tebyg yn b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Canslo \left(b-1\right)\left(b+1\right) yn y rhifiadur a'r enwadur.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}