Enrhifo
\frac{3}{a^{2}-1}
Ehangu
\frac{3}{a^{2}-1}
Rhannu
Copïo i clipfwrdd
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Ffactora a^{2}-a. Ffactora a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin a\left(a-1\right) a a\left(a+1\right) yw a\left(a-1\right)\left(a+1\right). Lluoswch \frac{a+1}{a\left(a-1\right)} â \frac{a+1}{a+1}. Lluoswch \frac{a-1}{a\left(a+1\right)} â \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Gan fod gan \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} a \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Gwnewch y gwaith lluosi yn \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cyfuno termau tebyg yn a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Canslo a yn y rhifiadur a'r enwadur.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Ffactora a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Gan fod gan \frac{4}{\left(a-1\right)\left(a+1\right)} a \frac{1}{\left(a-1\right)\left(a+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron. Tynnu 1 o 4 i gael 3.
\frac{3}{a^{2}-1}
Ehangu \left(a-1\right)\left(a+1\right).
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Ffactora a^{2}-a. Ffactora a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin a\left(a-1\right) a a\left(a+1\right) yw a\left(a-1\right)\left(a+1\right). Lluoswch \frac{a+1}{a\left(a-1\right)} â \frac{a+1}{a+1}. Lluoswch \frac{a-1}{a\left(a+1\right)} â \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Gan fod gan \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} a \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Gwnewch y gwaith lluosi yn \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cyfuno termau tebyg yn a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Canslo a yn y rhifiadur a'r enwadur.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Ffactora a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Gan fod gan \frac{4}{\left(a-1\right)\left(a+1\right)} a \frac{1}{\left(a-1\right)\left(a+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron. Tynnu 1 o 4 i gael 3.
\frac{3}{a^{2}-1}
Ehangu \left(a-1\right)\left(a+1\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}