Datrys ar gyfer n
n=\frac{\log_{3}\left(4802\right)-7}{2}\approx 0.357952375
Datrys ar gyfer n (complex solution)
n=\frac{\pi n_{1}i}{\ln(3)}+\frac{\log_{3}\left(4802\right)}{2}-\frac{7}{2}
n_{1}\in \mathrm{Z}
Rhannu
Copïo i clipfwrdd
\frac{9^{n}\times 243\times 27^{3}}{2\times 21^{4}}=27
Cyfrifo 3 i bŵer 5 a chael 243.
\frac{9^{n}\times 243\times 19683}{2\times 21^{4}}=27
Cyfrifo 27 i bŵer 3 a chael 19683.
\frac{9^{n}\times 4782969}{2\times 21^{4}}=27
Lluosi 243 a 19683 i gael 4782969.
\frac{9^{n}\times 4782969}{2\times 194481}=27
Cyfrifo 21 i bŵer 4 a chael 194481.
\frac{9^{n}\times 4782969}{388962}=27
Lluosi 2 a 194481 i gael 388962.
9^{n}\times \frac{59049}{4802}=27
Rhannu 9^{n}\times 4782969 â 388962 i gael 9^{n}\times \frac{59049}{4802}.
9^{n}=27\times \frac{4802}{59049}
Lluoswch y ddwy ochr â \frac{4802}{59049}, cilyddol \frac{59049}{4802}.
9^{n}=\frac{4802}{2187}
Lluosi 27 a \frac{4802}{59049} i gael \frac{4802}{2187}.
\log(9^{n})=\log(\frac{4802}{2187})
Cymryd logarithm dwy ochr yr hafaliad.
n\log(9)=\log(\frac{4802}{2187})
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
n=\frac{\log(\frac{4802}{2187})}{\log(9)}
Rhannu’r ddwy ochr â \log(9).
n=\log_{9}\left(\frac{4802}{2187}\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}