Datrys ar gyfer x
x=\frac{5}{259}\approx 0.019305019
Graff
Rhannu
Copïo i clipfwrdd
\frac{7x}{0.024}+\frac{-1}{0.024}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Rhannu pob term 7x-1 â 0.024 i gael \frac{7x}{0.024}+\frac{-1}{0.024}.
\frac{875}{3}x+\frac{-1}{0.024}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Rhannu 7x â 0.024 i gael \frac{875}{3}x.
\frac{875}{3}x+\frac{-1000}{24}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Ehangu \frac{-1}{0.024} drwy luosi'r rhifiadur a'r enwadur gyda 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{1-0.2x}{0.018}-\frac{5x+1}{0.012}
Lleihau'r ffracsiwn \frac{-1000}{24} i'r graddau lleiaf posib drwy dynnu a chanslo allan 8.
\frac{875}{3}x-\frac{125}{3}=\frac{1}{0.018}+\frac{-0.2x}{0.018}-\frac{5x+1}{0.012}
Rhannu pob term 1-0.2x â 0.018 i gael \frac{1}{0.018}+\frac{-0.2x}{0.018}.
\frac{875}{3}x-\frac{125}{3}=\frac{1000}{18}+\frac{-0.2x}{0.018}-\frac{5x+1}{0.012}
Ehangu \frac{1}{0.018} drwy luosi'r rhifiadur a'r enwadur gyda 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}+\frac{-0.2x}{0.018}-\frac{5x+1}{0.012}
Lleihau'r ffracsiwn \frac{1000}{18} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{5x+1}{0.012}
Rhannu -0.2x â 0.018 i gael -\frac{100}{9}x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{5x}{0.012}+\frac{1}{0.012}\right)
Rhannu pob term 5x+1 â 0.012 i gael \frac{5x}{0.012}+\frac{1}{0.012}.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{1250}{3}x+\frac{1}{0.012}\right)
Rhannu 5x â 0.012 i gael \frac{1250}{3}x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{1250}{3}x+\frac{1000}{12}\right)
Ehangu \frac{1}{0.012} drwy luosi'r rhifiadur a'r enwadur gyda 1000.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\left(\frac{1250}{3}x+\frac{250}{3}\right)
Lleihau'r ffracsiwn \frac{1000}{12} i'r graddau lleiaf posib drwy dynnu a chanslo allan 4.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{100}{9}x-\frac{1250}{3}x-\frac{250}{3}
I ddod o hyd i wrthwyneb \frac{1250}{3}x+\frac{250}{3}, dewch o hyd i wrthwyneb pob term.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{3850}{9}x-\frac{250}{3}
Cyfuno -\frac{100}{9}x a -\frac{1250}{3}x i gael -\frac{3850}{9}x.
\frac{875}{3}x-\frac{125}{3}=\frac{500}{9}-\frac{3850}{9}x-\frac{750}{9}
Lluosrif lleiaf cyffredin 9 a 3 yw 9. Troswch \frac{500}{9} a \frac{250}{3} yn ffracsiynau gyda’r enwadur 9.
\frac{875}{3}x-\frac{125}{3}=\frac{500-750}{9}-\frac{3850}{9}x
Gan fod gan \frac{500}{9} a \frac{750}{9} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{875}{3}x-\frac{125}{3}=-\frac{250}{9}-\frac{3850}{9}x
Tynnu 750 o 500 i gael -250.
\frac{875}{3}x-\frac{125}{3}+\frac{3850}{9}x=-\frac{250}{9}
Ychwanegu \frac{3850}{9}x at y ddwy ochr.
\frac{6475}{9}x-\frac{125}{3}=-\frac{250}{9}
Cyfuno \frac{875}{3}x a \frac{3850}{9}x i gael \frac{6475}{9}x.
\frac{6475}{9}x=-\frac{250}{9}+\frac{125}{3}
Ychwanegu \frac{125}{3} at y ddwy ochr.
\frac{6475}{9}x=-\frac{250}{9}+\frac{375}{9}
Lluosrif lleiaf cyffredin 9 a 3 yw 9. Troswch -\frac{250}{9} a \frac{125}{3} yn ffracsiynau gyda’r enwadur 9.
\frac{6475}{9}x=\frac{-250+375}{9}
Gan fod gan -\frac{250}{9} a \frac{375}{9} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{6475}{9}x=\frac{125}{9}
Adio -250 a 375 i gael 125.
x=\frac{\frac{125}{9}}{\frac{6475}{9}}
Rhannu’r ddwy ochr â \frac{6475}{9}.
x=\frac{125}{9\times \frac{6475}{9}}
Mynegwch \frac{\frac{125}{9}}{\frac{6475}{9}} fel ffracsiwn unigol.
x=\frac{125}{6475}
Lluosi 9 a \frac{6475}{9} i gael 6475.
x=\frac{5}{259}
Lleihau'r ffracsiwn \frac{125}{6475} i'r graddau lleiaf posib drwy dynnu a chanslo allan 25.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}