Enrhifo
-36+\frac{1}{4n}+\frac{3}{2n^{2}}
Ehangu
-36+\frac{1}{4n}+\frac{3}{2n^{2}}
Rhannu
Copïo i clipfwrdd
\frac{6m+mn}{4mn^{2}}-36
Mynegwch \frac{\frac{6m+mn}{4m}}{n^{2}} fel ffracsiwn unigol.
\frac{m\left(n+6\right)}{4mn^{2}}-36
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{6m+mn}{4mn^{2}}.
\frac{n+6}{4n^{2}}-36
Canslo m yn y rhifiadur a'r enwadur.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 36 â \frac{4n^{2}}{4n^{2}}.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
Gan fod gan \frac{n+6}{4n^{2}} a \frac{36\times 4n^{2}}{4n^{2}} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{n+6-144n^{2}}{4n^{2}}
Gwnewch y gwaith lluosi yn n+6-36\times 4n^{2}.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{n+6-144n^{2}}{4n^{2}}.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
Canslo 4 yn y rhifiadur a'r enwadur.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
I ddod o hyd i wrthwyneb -\frac{1}{288}\sqrt{3457}+\frac{1}{288}, dewch o hyd i wrthwyneb pob term.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
I ddod o hyd i wrthwyneb \frac{1}{288}\sqrt{3457}+\frac{1}{288}, dewch o hyd i wrthwyneb pob term.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
Defnyddio’r briodwedd ddosbarthu i luosi -36 â n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
Defnyddio’r briodwedd ddosbarthu i luosi -36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} â n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} a chyfuno termau tebyg.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
Sgwâr \sqrt{3457} yw 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
Lluosi \frac{1}{2304} a 3457 i gael \frac{3457}{2304}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
Tynnu \frac{1}{2304} o \frac{3457}{2304} i gael \frac{3}{2}.
\frac{6m+mn}{4mn^{2}}-36
Mynegwch \frac{\frac{6m+mn}{4m}}{n^{2}} fel ffracsiwn unigol.
\frac{m\left(n+6\right)}{4mn^{2}}-36
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{6m+mn}{4mn^{2}}.
\frac{n+6}{4n^{2}}-36
Canslo m yn y rhifiadur a'r enwadur.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 36 â \frac{4n^{2}}{4n^{2}}.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
Gan fod gan \frac{n+6}{4n^{2}} a \frac{36\times 4n^{2}}{4n^{2}} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{n+6-144n^{2}}{4n^{2}}
Gwnewch y gwaith lluosi yn n+6-36\times 4n^{2}.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{n+6-144n^{2}}{4n^{2}}.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
Canslo 4 yn y rhifiadur a'r enwadur.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
I ddod o hyd i wrthwyneb -\frac{1}{288}\sqrt{3457}+\frac{1}{288}, dewch o hyd i wrthwyneb pob term.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
I ddod o hyd i wrthwyneb \frac{1}{288}\sqrt{3457}+\frac{1}{288}, dewch o hyd i wrthwyneb pob term.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
Defnyddio’r briodwedd ddosbarthu i luosi -36 â n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
Defnyddio’r briodwedd ddosbarthu i luosi -36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8} â n-\frac{1}{288}\sqrt{3457}-\frac{1}{288} a chyfuno termau tebyg.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
Sgwâr \sqrt{3457} yw 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
Lluosi \frac{1}{2304} a 3457 i gael \frac{3457}{2304}.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
Tynnu \frac{1}{2304} o \frac{3457}{2304} i gael \frac{3}{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}