Neidio i'r prif gynnwys
Datrys ar gyfer h
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\frac{490000}{17}+34\times 9800h=26500\left(h^{2}-8875^{2}\right)
Lluosi \frac{50}{17} a 9800 i gael \frac{490000}{17}.
\frac{490000}{17}+333200h=26500\left(h^{2}-8875^{2}\right)
Lluosi 34 a 9800 i gael 333200.
\frac{490000}{17}+333200h=26500\left(h^{2}-78765625\right)
Cyfrifo 8875 i bŵer 2 a chael 78765625.
\frac{490000}{17}+333200h=26500h^{2}-2087289062500
Defnyddio’r briodwedd ddosbarthu i luosi 26500 â h^{2}-78765625.
\frac{490000}{17}+333200h-26500h^{2}=-2087289062500
Tynnu 26500h^{2} o'r ddwy ochr.
\frac{490000}{17}+333200h-26500h^{2}+2087289062500=0
Ychwanegu 2087289062500 at y ddwy ochr.
\frac{35483914552500}{17}+333200h-26500h^{2}=0
Adio \frac{490000}{17} a 2087289062500 i gael \frac{35483914552500}{17}.
-26500h^{2}+333200h+\frac{35483914552500}{17}=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
h=\frac{-333200±\sqrt{333200^{2}-4\left(-26500\right)\times \frac{35483914552500}{17}}}{2\left(-26500\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch -26500 am a, 333200 am b, a \frac{35483914552500}{17} am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-333200±\sqrt{111022240000-4\left(-26500\right)\times \frac{35483914552500}{17}}}{2\left(-26500\right)}
Sgwâr 333200.
h=\frac{-333200±\sqrt{111022240000+106000\times \frac{35483914552500}{17}}}{2\left(-26500\right)}
Lluoswch -4 â -26500.
h=\frac{-333200±\sqrt{111022240000+\frac{3761294942565000000}{17}}}{2\left(-26500\right)}
Lluoswch 106000 â \frac{35483914552500}{17}.
h=\frac{-333200±\sqrt{\frac{3761296829943080000}{17}}}{2\left(-26500\right)}
Adio 111022240000 at \frac{3761294942565000000}{17}.
h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{2\left(-26500\right)}
Cymryd isradd \frac{3761296829943080000}{17}.
h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{-53000}
Lluoswch 2 â -26500.
h=\frac{\frac{200\sqrt{1598551152725809}}{17}-333200}{-53000}
Datryswch yr hafaliad h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{-53000} pan fydd ± yn plws. Adio -333200 at \frac{200\sqrt{1598551152725809}}{17}.
h=-\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
Rhannwch -333200+\frac{200\sqrt{1598551152725809}}{17} â -53000.
h=\frac{-\frac{200\sqrt{1598551152725809}}{17}-333200}{-53000}
Datryswch yr hafaliad h=\frac{-333200±\frac{200\sqrt{1598551152725809}}{17}}{-53000} pan fydd ± yn minws. Tynnu \frac{200\sqrt{1598551152725809}}{17} o -333200.
h=\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
Rhannwch -333200-\frac{200\sqrt{1598551152725809}}{17} â -53000.
h=-\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265} h=\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
Mae’r hafaliad wedi’i ddatrys nawr.
\frac{490000}{17}+34\times 9800h=26500\left(h^{2}-8875^{2}\right)
Lluosi \frac{50}{17} a 9800 i gael \frac{490000}{17}.
\frac{490000}{17}+333200h=26500\left(h^{2}-8875^{2}\right)
Lluosi 34 a 9800 i gael 333200.
\frac{490000}{17}+333200h=26500\left(h^{2}-78765625\right)
Cyfrifo 8875 i bŵer 2 a chael 78765625.
\frac{490000}{17}+333200h=26500h^{2}-2087289062500
Defnyddio’r briodwedd ddosbarthu i luosi 26500 â h^{2}-78765625.
\frac{490000}{17}+333200h-26500h^{2}=-2087289062500
Tynnu 26500h^{2} o'r ddwy ochr.
333200h-26500h^{2}=-2087289062500-\frac{490000}{17}
Tynnu \frac{490000}{17} o'r ddwy ochr.
333200h-26500h^{2}=-\frac{35483914552500}{17}
Tynnu \frac{490000}{17} o -2087289062500 i gael -\frac{35483914552500}{17}.
-26500h^{2}+333200h=-\frac{35483914552500}{17}
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
\frac{-26500h^{2}+333200h}{-26500}=-\frac{\frac{35483914552500}{17}}{-26500}
Rhannu’r ddwy ochr â -26500.
h^{2}+\frac{333200}{-26500}h=-\frac{\frac{35483914552500}{17}}{-26500}
Mae rhannu â -26500 yn dad-wneud lluosi â -26500.
h^{2}-\frac{3332}{265}h=-\frac{\frac{35483914552500}{17}}{-26500}
Lleihau'r ffracsiwn \frac{333200}{-26500} i'r graddau lleiaf posib drwy dynnu a chanslo allan 100.
h^{2}-\frac{3332}{265}h=\frac{70967829105}{901}
Rhannwch -\frac{35483914552500}{17} â -26500.
h^{2}-\frac{3332}{265}h+\left(-\frac{1666}{265}\right)^{2}=\frac{70967829105}{901}+\left(-\frac{1666}{265}\right)^{2}
Rhannwch -\frac{3332}{265}, cyfernod y term x, â 2 i gael -\frac{1666}{265}. Yna ychwanegwch sgwâr -\frac{1666}{265} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}=\frac{70967829105}{901}+\frac{2775556}{70225}
Sgwariwch -\frac{1666}{265} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}=\frac{94032420748577}{1193825}
Adio \frac{70967829105}{901} at \frac{2775556}{70225} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(h-\frac{1666}{265}\right)^{2}=\frac{94032420748577}{1193825}
Ffactora h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{1666}{265}\right)^{2}}=\sqrt{\frac{94032420748577}{1193825}}
Cymrwch isradd dwy ochr yr hafaliad.
h-\frac{1666}{265}=\frac{\sqrt{1598551152725809}}{4505} h-\frac{1666}{265}=-\frac{\sqrt{1598551152725809}}{4505}
Symleiddio.
h=\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265} h=-\frac{\sqrt{1598551152725809}}{4505}+\frac{1666}{265}
Adio \frac{1666}{265} at ddwy ochr yr hafaliad.