Datrys ar gyfer x
x = \frac{\sqrt{147456000688000001} + 384000001}{8000000} \approx 96.000000237
x=\frac{384000001-\sqrt{147456000688000001}}{8000000}\approx 0.000000013
Graff
Cwis
Quadratic Equation
5 problemau tebyg i:
\frac { 5 - x } { 4 \times 10 ^ { 6 } } = 96 x - x ^ { 2 }
Rhannu
Copïo i clipfwrdd
\frac{5-x}{4\times 1000000}=96x-x^{2}
Cyfrifo 10 i bŵer 6 a chael 1000000.
\frac{5-x}{4000000}=96x-x^{2}
Lluosi 4 a 1000000 i gael 4000000.
\frac{1}{800000}-\frac{1}{4000000}x=96x-x^{2}
Rhannu pob term 5-x â 4000000 i gael \frac{1}{800000}-\frac{1}{4000000}x.
\frac{1}{800000}-\frac{1}{4000000}x-96x=-x^{2}
Tynnu 96x o'r ddwy ochr.
\frac{1}{800000}-\frac{384000001}{4000000}x=-x^{2}
Cyfuno -\frac{1}{4000000}x a -96x i gael -\frac{384000001}{4000000}x.
\frac{1}{800000}-\frac{384000001}{4000000}x+x^{2}=0
Ychwanegu x^{2} at y ddwy ochr.
x^{2}-\frac{384000001}{4000000}x+\frac{1}{800000}=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\left(-\frac{384000001}{4000000}\right)^{2}-4\times \frac{1}{800000}}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -\frac{384000001}{4000000} am b, a \frac{1}{800000} am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\frac{147456000768000001}{16000000000000}-4\times \frac{1}{800000}}}{2}
Sgwariwch -\frac{384000001}{4000000} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\frac{147456000768000001}{16000000000000}-\frac{1}{200000}}}{2}
Lluoswch -4 â \frac{1}{800000}.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\frac{147456000688000001}{16000000000000}}}{2}
Adio \frac{147456000768000001}{16000000000000} at -\frac{1}{200000} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\frac{\sqrt{147456000688000001}}{4000000}}{2}
Cymryd isradd \frac{147456000688000001}{16000000000000}.
x=\frac{\frac{384000001}{4000000}±\frac{\sqrt{147456000688000001}}{4000000}}{2}
Gwrthwyneb -\frac{384000001}{4000000} yw \frac{384000001}{4000000}.
x=\frac{\sqrt{147456000688000001}+384000001}{2\times 4000000}
Datryswch yr hafaliad x=\frac{\frac{384000001}{4000000}±\frac{\sqrt{147456000688000001}}{4000000}}{2} pan fydd ± yn plws. Adio \frac{384000001}{4000000} at \frac{\sqrt{147456000688000001}}{4000000}.
x=\frac{\sqrt{147456000688000001}+384000001}{8000000}
Rhannwch \frac{384000001+\sqrt{147456000688000001}}{4000000} â 2.
x=\frac{384000001-\sqrt{147456000688000001}}{2\times 4000000}
Datryswch yr hafaliad x=\frac{\frac{384000001}{4000000}±\frac{\sqrt{147456000688000001}}{4000000}}{2} pan fydd ± yn minws. Tynnu \frac{\sqrt{147456000688000001}}{4000000} o \frac{384000001}{4000000}.
x=\frac{384000001-\sqrt{147456000688000001}}{8000000}
Rhannwch \frac{384000001-\sqrt{147456000688000001}}{4000000} â 2.
x=\frac{\sqrt{147456000688000001}+384000001}{8000000} x=\frac{384000001-\sqrt{147456000688000001}}{8000000}
Mae’r hafaliad wedi’i ddatrys nawr.
\frac{5-x}{4\times 1000000}=96x-x^{2}
Cyfrifo 10 i bŵer 6 a chael 1000000.
\frac{5-x}{4000000}=96x-x^{2}
Lluosi 4 a 1000000 i gael 4000000.
\frac{1}{800000}-\frac{1}{4000000}x=96x-x^{2}
Rhannu pob term 5-x â 4000000 i gael \frac{1}{800000}-\frac{1}{4000000}x.
\frac{1}{800000}-\frac{1}{4000000}x-96x=-x^{2}
Tynnu 96x o'r ddwy ochr.
\frac{1}{800000}-\frac{384000001}{4000000}x=-x^{2}
Cyfuno -\frac{1}{4000000}x a -96x i gael -\frac{384000001}{4000000}x.
\frac{1}{800000}-\frac{384000001}{4000000}x+x^{2}=0
Ychwanegu x^{2} at y ddwy ochr.
-\frac{384000001}{4000000}x+x^{2}=-\frac{1}{800000}
Tynnu \frac{1}{800000} o'r ddwy ochr. Mae tynnu unrhyw beth o sero’n rhoi negydd y swm.
x^{2}-\frac{384000001}{4000000}x=-\frac{1}{800000}
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
x^{2}-\frac{384000001}{4000000}x+\left(-\frac{384000001}{8000000}\right)^{2}=-\frac{1}{800000}+\left(-\frac{384000001}{8000000}\right)^{2}
Rhannwch -\frac{384000001}{4000000}, cyfernod y term x, â 2 i gael -\frac{384000001}{8000000}. Yna ychwanegwch sgwâr -\frac{384000001}{8000000} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-\frac{384000001}{4000000}x+\frac{147456000768000001}{64000000000000}=-\frac{1}{800000}+\frac{147456000768000001}{64000000000000}
Sgwariwch -\frac{384000001}{8000000} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-\frac{384000001}{4000000}x+\frac{147456000768000001}{64000000000000}=\frac{147456000688000001}{64000000000000}
Adio -\frac{1}{800000} at \frac{147456000768000001}{64000000000000} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(x-\frac{384000001}{8000000}\right)^{2}=\frac{147456000688000001}{64000000000000}
Ffactora x^{2}-\frac{384000001}{4000000}x+\frac{147456000768000001}{64000000000000}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{384000001}{8000000}\right)^{2}}=\sqrt{\frac{147456000688000001}{64000000000000}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{384000001}{8000000}=\frac{\sqrt{147456000688000001}}{8000000} x-\frac{384000001}{8000000}=-\frac{\sqrt{147456000688000001}}{8000000}
Symleiddio.
x=\frac{\sqrt{147456000688000001}+384000001}{8000000} x=\frac{384000001-\sqrt{147456000688000001}}{8000000}
Adio \frac{384000001}{8000000} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}