Enrhifo
\frac{32}{9}\approx 3.555555556
Ffactor
\frac{2 ^ {5}}{3 ^ {2}} = 3\frac{5}{9} = 3.5555555555555554
Rhannu
Copïo i clipfwrdd
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Mae'n rhesymoli enwadur \frac{5-\sqrt{7}}{5+\sqrt{7}} drwy luosi'r rhifiadur a'r enwadur â 5-\sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Ystyriwch \left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{25-7}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Sgwâr 5. Sgwâr \sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Tynnu 7 o 25 i gael 18.
\frac{\left(5-\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Lluosi 5-\sqrt{7} a 5-\sqrt{7} i gael \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+7}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Sgwâr \sqrt{7} yw 7.
\frac{32-10\sqrt{7}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Adio 25 a 7 i gael 32.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
Mae'n rhesymoli enwadur \frac{5+\sqrt{7}}{5-\sqrt{7}} drwy luosi'r rhifiadur a'r enwadur â 5+\sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}
Ystyriwch \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{25-7}
Sgwâr 5. Sgwâr \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{18}
Tynnu 7 o 25 i gael 18.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)^{2}}{18}
Lluosi 5+\sqrt{7} a 5+\sqrt{7} i gael \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+7}{18}
Sgwâr \sqrt{7} yw 7.
\frac{32-10\sqrt{7}}{18}+\frac{32+10\sqrt{7}}{18}
Adio 25 a 7 i gael 32.
\frac{32-10\sqrt{7}+32+10\sqrt{7}}{18}
Gan fod gan \frac{32-10\sqrt{7}}{18} a \frac{32+10\sqrt{7}}{18} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{64}{18}
Gwnewch y gwaith cyfrifo yn 32-10\sqrt{7}+32+10\sqrt{7}.
\frac{32}{9}
Lleihau'r ffracsiwn \frac{64}{18} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}