Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Ffactor
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Mae'n rhesymoli enwadur \frac{5-\sqrt{7}}{5+\sqrt{7}} drwy luosi'r rhifiadur a'r enwadur â 5-\sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Ystyriwch \left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{25-7}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Sgwâr 5. Sgwâr \sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Tynnu 7 o 25 i gael 18.
\frac{\left(5-\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Lluosi 5-\sqrt{7} a 5-\sqrt{7} i gael \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+7}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Sgwâr \sqrt{7} yw 7.
\frac{32-10\sqrt{7}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Adio 25 a 7 i gael 32.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
Mae'n rhesymoli enwadur \frac{5+\sqrt{7}}{5-\sqrt{7}} drwy luosi'r rhifiadur a'r enwadur â 5+\sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}
Ystyriwch \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{25-7}
Sgwâr 5. Sgwâr \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{18}
Tynnu 7 o 25 i gael 18.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)^{2}}{18}
Lluosi 5+\sqrt{7} a 5+\sqrt{7} i gael \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+7}{18}
Sgwâr \sqrt{7} yw 7.
\frac{32-10\sqrt{7}}{18}+\frac{32+10\sqrt{7}}{18}
Adio 25 a 7 i gael 32.
\frac{32-10\sqrt{7}+32+10\sqrt{7}}{18}
Gan fod gan \frac{32-10\sqrt{7}}{18} a \frac{32+10\sqrt{7}}{18} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{64}{18}
Gwnewch y gwaith cyfrifo yn 32-10\sqrt{7}+32+10\sqrt{7}.
\frac{32}{9}
Lleihau'r ffracsiwn \frac{64}{18} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.