Enrhifo
15\sqrt{5}+19\sqrt{2}\approx 60.411077348
Ffactor
15 \sqrt{5} + 19 \sqrt{2} = 60.411077348
Rhannu
Copïo i clipfwrdd
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right)}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Mae'n rhesymoli enwadur \frac{31\sqrt{2}+31\sqrt{5}}{2\sqrt{10}-3} drwy luosi'r rhifiadur a'r enwadur â 2\sqrt{10}+3.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Ystyriwch \left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{2^{2}\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Ehangu \left(2\sqrt{10}\right)^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\times 10-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Sgwâr \sqrt{10} yw 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Lluosi 4 a 10 i gael 40.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-9}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Tynnu 9 o 40 i gael 31.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right)}
Mae'n rhesymoli enwadur \frac{62\sqrt{2}}{3-2\sqrt{10}} drwy luosi'r rhifiadur a'r enwadur â 3+2\sqrt{10}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{3^{2}-\left(-2\sqrt{10}\right)^{2}}
Ystyriwch \left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\sqrt{10}\right)^{2}}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\right)^{2}\left(\sqrt{10}\right)^{2}}
Ehangu \left(-2\sqrt{10}\right)^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\left(\sqrt{10}\right)^{2}}
Cyfrifo -2 i bŵer 2 a chael 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\times 10}
Sgwâr \sqrt{10} yw 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-40}
Lluosi 4 a 10 i gael 40.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{-31}
Tynnu 40 o 9 i gael -31.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\left(-2\sqrt{2}\left(3+2\sqrt{10}\right)\right)
Rhannu 62\sqrt{2}\left(3+2\sqrt{10}\right) â -31 i gael -2\sqrt{2}\left(3+2\sqrt{10}\right).
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Gwrthwyneb -2\sqrt{2}\left(3+2\sqrt{10}\right) yw 2\sqrt{2}\left(3+2\sqrt{10}\right).
\frac{62\sqrt{10}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Cyfrifwch y briodoledd ddosrannol drwy luosi pob 31\sqrt{2}+31\sqrt{5} gan bob 2\sqrt{10}+3.
\frac{62\sqrt{2}\sqrt{5}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Ffactora 10=2\times 5. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 5} fel lluoswm ail israddau \sqrt{2}\sqrt{5}.
\frac{62\times 2\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Lluosi 62 a 2 i gael 124.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{5}\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Ffactora 10=5\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{5\times 2} fel lluoswm ail israddau \sqrt{5}\sqrt{2}.
\frac{124\sqrt{5}+93\sqrt{2}+62\times 5\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Lluosi \sqrt{5} a \sqrt{5} i gael 5.
\frac{124\sqrt{5}+93\sqrt{2}+310\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Lluosi 62 a 5 i gael 310.
\frac{124\sqrt{5}+403\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Cyfuno 93\sqrt{2} a 310\sqrt{2} i gael 403\sqrt{2}.
\frac{217\sqrt{5}+403\sqrt{2}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Cyfuno 124\sqrt{5} a 93\sqrt{5} i gael 217\sqrt{5}.
7\sqrt{5}+13\sqrt{2}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Rhannu pob term 217\sqrt{5}+403\sqrt{2} â 31 i gael 7\sqrt{5}+13\sqrt{2}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{10}\sqrt{2}
Defnyddio’r briodwedd ddosbarthu i luosi 2\sqrt{2} â 3+2\sqrt{10}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{2}\sqrt{5}\sqrt{2}
Ffactora 10=2\times 5. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 5} fel lluoswm ail israddau \sqrt{2}\sqrt{5}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\times 2\sqrt{5}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+8\sqrt{5}
Lluosi 4 a 2 i gael 8.
7\sqrt{5}+19\sqrt{2}+8\sqrt{5}
Cyfuno 13\sqrt{2} a 6\sqrt{2} i gael 19\sqrt{2}.
15\sqrt{5}+19\sqrt{2}
Cyfuno 7\sqrt{5} a 8\sqrt{5} i gael 15\sqrt{5}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}