Enrhifo
\frac{2x+3}{2x+1}
Gwahaniaethu w.r.t. x
-\frac{4}{\left(2x+1\right)^{2}}
Graff
Rhannu
Copïo i clipfwrdd
\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1}
Ffactora 1+x-2x^{2}.
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(-x+1\right)\left(2x+1\right) a x-1 yw \left(x-1\right)\left(2x+1\right). Lluoswch \frac{3}{\left(-x+1\right)\left(2x+1\right)} â \frac{-1}{-1}. Lluoswch \frac{x}{x-1} â \frac{2x+1}{2x+1}.
\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Gan fod gan \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} a \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}
Gwnewch y gwaith lluosi yn 3\left(-1\right)+x\left(2x+1\right).
\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{2x+3}{2x+1}
Canslo x-1 yn y rhifiadur a'r enwadur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1})
Ffactora 1+x-2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin \left(-x+1\right)\left(2x+1\right) a x-1 yw \left(x-1\right)\left(2x+1\right). Lluoswch \frac{3}{\left(-x+1\right)\left(2x+1\right)} â \frac{-1}{-1}. Lluoswch \frac{x}{x-1} â \frac{2x+1}{2x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Gan fod gan \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} a \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)})
Gwnewch y gwaith lluosi yn 3\left(-1\right)+x\left(2x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)})
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{2x+1})
Canslo x-1 yn y rhifiadur a'r enwadur.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+3)-\left(2x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\left(2x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+3\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\left(2x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+3\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
Gwneud y symiau.
\frac{2x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}\times 2x^{0}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Ehangu gan ddefnyddio’r briodwedd ddosbarthol.
\frac{2\times 2x^{1}+2x^{0}-\left(2\times 2x^{1}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
I luosi pwerau sy’n rhannu’r un sail, ychwanegwch eu hesbonyddion.
\frac{4x^{1}+2x^{0}-\left(4x^{1}+6x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Gwneud y symiau.
\frac{4x^{1}+2x^{0}-4x^{1}-6x^{0}}{\left(2x^{1}+1\right)^{2}}
Tynnu’r cromfachau diangen.
\frac{\left(4-4\right)x^{1}+\left(2-6\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
Cyfuno termau sydd yr un peth.
\frac{-4x^{0}}{\left(2x^{1}+1\right)^{2}}
Tynnwch 4 o 4 a 6 o 2.
\frac{-4x^{0}}{\left(2x+1\right)^{2}}
Ar gyfer unrhyw derm t, t^{1}=t.
\frac{-4}{\left(2x+1\right)^{2}}
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}