Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Rhan Real
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\frac{\left(3+5i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Lluoswch y rhifiadur a'r enwadur gyda chyfiau cymhleth yr enwadur, 1+2i.
\frac{\left(3+5i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+5i\right)\left(1+2i\right)}{5}
Drwy ddiffiniad, i^{2} yw -1. Cyfrifwch yr enwadur.
\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2i^{2}}{5}
Lluoswch y rhifau cymhleth 3+5i a 1+2i yn yr un modd ag y byddech yn lluosogi binomialau.
\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right)}{5}
Drwy ddiffiniad, i^{2} yw -1.
\frac{3+6i+5i-10}{5}
Gwnewch y gwaith lluosi yn 3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right).
\frac{3-10+\left(6+5\right)i}{5}
Cyfunwch y rhannau real a dychmygus yn 3+6i+5i-10.
\frac{-7+11i}{5}
Gwnewch y gwaith adio yn 3-10+\left(6+5\right)i.
-\frac{7}{5}+\frac{11}{5}i
Rhannu -7+11i â 5 i gael -\frac{7}{5}+\frac{11}{5}i.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Lluoswch rifiadur ac enwadur \frac{3+5i}{1-2i} gyda chyfiau cymhleth yr enwadur 1+2i.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{5})
Drwy ddiffiniad, i^{2} yw -1. Cyfrifwch yr enwadur.
Re(\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2i^{2}}{5})
Lluoswch y rhifau cymhleth 3+5i a 1+2i yn yr un modd ag y byddech yn lluosogi binomialau.
Re(\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right)}{5})
Drwy ddiffiniad, i^{2} yw -1.
Re(\frac{3+6i+5i-10}{5})
Gwnewch y gwaith lluosi yn 3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right).
Re(\frac{3-10+\left(6+5\right)i}{5})
Cyfunwch y rhannau real a dychmygus yn 3+6i+5i-10.
Re(\frac{-7+11i}{5})
Gwnewch y gwaith adio yn 3-10+\left(6+5\right)i.
Re(-\frac{7}{5}+\frac{11}{5}i)
Rhannu -7+11i â 5 i gael -\frac{7}{5}+\frac{11}{5}i.
-\frac{7}{5}
Rhan real -\frac{7}{5}+\frac{11}{5}i yw -\frac{7}{5}.