Enrhifo
\frac{1}{2}=0.5
Ffactor
\frac{1}{2} = 0.5
Rhannu
Copïo i clipfwrdd
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Mae'n rhesymoli enwadur \frac{3+2\sqrt{2}}{2+\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â 2-\sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Ystyriwch \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{4-2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Sgwâr 2. Sgwâr \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Tynnu 2 o 4 i gael 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Mae'n rhesymoli enwadur \frac{\sqrt{2}-1}{\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2}
Sgwâr \sqrt{2} yw 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{2\times 2}
Lluoswch \frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2} â \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Lluosi 2 a 2 i gael 4.
\frac{\left(6-3\sqrt{2}+4\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Cyfrifwch y briodoledd ddosrannol drwy luosi pob 3+2\sqrt{2} gan bob 2-\sqrt{2}.
\frac{\left(6+\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Cyfuno -3\sqrt{2} a 4\sqrt{2} i gael \sqrt{2}.
\frac{\left(6+\sqrt{2}-2\times 2\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Sgwâr \sqrt{2} yw 2.
\frac{\left(6+\sqrt{2}-4\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Lluosi -2 a 2 i gael -4.
\frac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Tynnu 4 o 6 i gael 2.
\frac{\left(2\sqrt{2}-2+\left(\sqrt{2}\right)^{2}-\sqrt{2}\right)\sqrt{2}}{4}
Cyfrifwch y briodoledd ddosrannol drwy luosi pob 2+\sqrt{2} gan bob \sqrt{2}-1.
\frac{\left(2\sqrt{2}-2+2-\sqrt{2}\right)\sqrt{2}}{4}
Sgwâr \sqrt{2} yw 2.
\frac{\left(2\sqrt{2}-\sqrt{2}\right)\sqrt{2}}{4}
Adio -2 a 2 i gael 0.
\frac{\sqrt{2}\sqrt{2}}{4}
Cyfuno 2\sqrt{2} a -\sqrt{2} i gael \sqrt{2}.
\frac{2}{4}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
\frac{1}{2}
Lleihau'r ffracsiwn \frac{2}{4} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}