Enrhifo
\frac{4\left(u+1\right)}{u^{2}+2u+2}
Ehangu
\frac{4\left(u+1\right)}{u^{2}+2u+2}
Rhannu
Copïo i clipfwrdd
\frac{\frac{2\left(u+2\right)}{u+2}-\frac{2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 2 â \frac{u+2}{u+2}.
\frac{\frac{2\left(u+2\right)-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Gan fod gan \frac{2\left(u+2\right)}{u+2} a \frac{2}{u+2} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\frac{2u+4-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Gwnewch y gwaith lluosi yn 2\left(u+2\right)-2.
\frac{\frac{2u+2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Cyfuno termau tebyg yn 2u+4-2.
\frac{\frac{2u+2}{u+2}}{\frac{2}{2\left(u+2\right)}+\frac{u\left(u+2\right)}{2\left(u+2\right)}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin u+2 a 2 yw 2\left(u+2\right). Lluoswch \frac{1}{u+2} â \frac{2}{2}. Lluoswch \frac{u}{2} â \frac{u+2}{u+2}.
\frac{\frac{2u+2}{u+2}}{\frac{2+u\left(u+2\right)}{2\left(u+2\right)}}
Gan fod gan \frac{2}{2\left(u+2\right)} a \frac{u\left(u+2\right)}{2\left(u+2\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\frac{2u+2}{u+2}}{\frac{2+u^{2}+2u}{2\left(u+2\right)}}
Gwnewch y gwaith lluosi yn 2+u\left(u+2\right).
\frac{\left(2u+2\right)\times 2\left(u+2\right)}{\left(u+2\right)\left(2+u^{2}+2u\right)}
Rhannwch \frac{2u+2}{u+2} â \frac{2+u^{2}+2u}{2\left(u+2\right)} drwy luosi \frac{2u+2}{u+2} â chilydd \frac{2+u^{2}+2u}{2\left(u+2\right)}.
\frac{2\left(2u+2\right)}{u^{2}+2u+2}
Canslo u+2 yn y rhifiadur a'r enwadur.
\frac{4u+4}{u^{2}+2u+2}
Defnyddio’r briodwedd ddosbarthu i luosi 2 â 2u+2.
\frac{\frac{2\left(u+2\right)}{u+2}-\frac{2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 2 â \frac{u+2}{u+2}.
\frac{\frac{2\left(u+2\right)-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Gan fod gan \frac{2\left(u+2\right)}{u+2} a \frac{2}{u+2} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\frac{2u+4-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Gwnewch y gwaith lluosi yn 2\left(u+2\right)-2.
\frac{\frac{2u+2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Cyfuno termau tebyg yn 2u+4-2.
\frac{\frac{2u+2}{u+2}}{\frac{2}{2\left(u+2\right)}+\frac{u\left(u+2\right)}{2\left(u+2\right)}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin u+2 a 2 yw 2\left(u+2\right). Lluoswch \frac{1}{u+2} â \frac{2}{2}. Lluoswch \frac{u}{2} â \frac{u+2}{u+2}.
\frac{\frac{2u+2}{u+2}}{\frac{2+u\left(u+2\right)}{2\left(u+2\right)}}
Gan fod gan \frac{2}{2\left(u+2\right)} a \frac{u\left(u+2\right)}{2\left(u+2\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\frac{2u+2}{u+2}}{\frac{2+u^{2}+2u}{2\left(u+2\right)}}
Gwnewch y gwaith lluosi yn 2+u\left(u+2\right).
\frac{\left(2u+2\right)\times 2\left(u+2\right)}{\left(u+2\right)\left(2+u^{2}+2u\right)}
Rhannwch \frac{2u+2}{u+2} â \frac{2+u^{2}+2u}{2\left(u+2\right)} drwy luosi \frac{2u+2}{u+2} â chilydd \frac{2+u^{2}+2u}{2\left(u+2\right)}.
\frac{2\left(2u+2\right)}{u^{2}+2u+2}
Canslo u+2 yn y rhifiadur a'r enwadur.
\frac{4u+4}{u^{2}+2u+2}
Defnyddio’r briodwedd ddosbarthu i luosi 2 â 2u+2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}