Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Gwahaniaethu w.r.t. x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

\frac{2}{x+3}-\frac{1}{\left(x+3\right)\left(x+4\right)}
Ffactora x^{2}+7x+12.
\frac{2\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{1}{\left(x+3\right)\left(x+4\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin x+3 a \left(x+3\right)\left(x+4\right) yw \left(x+3\right)\left(x+4\right). Lluoswch \frac{2}{x+3} â \frac{x+4}{x+4}.
\frac{2\left(x+4\right)-1}{\left(x+3\right)\left(x+4\right)}
Gan fod gan \frac{2\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} a \frac{1}{\left(x+3\right)\left(x+4\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{2x+8-1}{\left(x+3\right)\left(x+4\right)}
Gwnewch y gwaith lluosi yn 2\left(x+4\right)-1.
\frac{2x+7}{\left(x+3\right)\left(x+4\right)}
Cyfuno termau tebyg yn 2x+8-1.
\frac{2x+7}{x^{2}+7x+12}
Ehangu \left(x+3\right)\left(x+4\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x+3}-\frac{1}{\left(x+3\right)\left(x+4\right)})
Ffactora x^{2}+7x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{1}{\left(x+3\right)\left(x+4\right)})
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin x+3 a \left(x+3\right)\left(x+4\right) yw \left(x+3\right)\left(x+4\right). Lluoswch \frac{2}{x+3} â \frac{x+4}{x+4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+4\right)-1}{\left(x+3\right)\left(x+4\right)})
Gan fod gan \frac{2\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} a \frac{1}{\left(x+3\right)\left(x+4\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+8-1}{\left(x+3\right)\left(x+4\right)})
Gwnewch y gwaith lluosi yn 2\left(x+4\right)-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+7}{\left(x+3\right)\left(x+4\right)})
Cyfuno termau tebyg yn 2x+8-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+7}{x^{2}+7x+12})
Defnyddio’r briodwedd ddosbarthu i luosi x+3 â x+4 a chyfuno termau tebyg.
\frac{\left(x^{2}+7x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+7)-\left(2x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+7x^{1}+12)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\left(x^{2}+7x^{1}+12\right)\times 2x^{1-1}-\left(2x^{1}+7\right)\left(2x^{2-1}+7x^{1-1}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\left(x^{2}+7x^{1}+12\right)\times 2x^{0}-\left(2x^{1}+7\right)\left(2x^{1}+7x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Symleiddio.
\frac{x^{2}\times 2x^{0}+7x^{1}\times 2x^{0}+12\times 2x^{0}-\left(2x^{1}+7\right)\left(2x^{1}+7x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Lluoswch x^{2}+7x^{1}+12 â 2x^{0}.
\frac{x^{2}\times 2x^{0}+7x^{1}\times 2x^{0}+12\times 2x^{0}-\left(2x^{1}\times 2x^{1}+2x^{1}\times 7x^{0}+7\times 2x^{1}+7\times 7x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Lluoswch 2x^{1}+7 â 2x^{1}+7x^{0}.
\frac{2x^{2}+7\times 2x^{1}+12\times 2x^{0}-\left(2\times 2x^{1+1}+2\times 7x^{1}+7\times 2x^{1}+7\times 7x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
I luosi pwerau sy’n rhannu’r un sail, ychwanegwch eu hesbonyddion.
\frac{2x^{2}+14x^{1}+24x^{0}-\left(4x^{2}+14x^{1}+14x^{1}+49x^{0}\right)}{\left(x^{2}+7x^{1}+12\right)^{2}}
Symleiddio.
\frac{-2x^{2}-14x^{1}-25x^{0}}{\left(x^{2}+7x^{1}+12\right)^{2}}
Cyfuno termau sydd yr un peth.
\frac{-2x^{2}-14x-25x^{0}}{\left(x^{2}+7x+12\right)^{2}}
Ar gyfer unrhyw derm t, t^{1}=t.
\frac{-2x^{2}-14x-25}{\left(x^{2}+7x+12\right)^{2}}
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.