Neidio i'r prif gynnwys
Datrys ar gyfer w
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

2=\frac{1}{4}w\left(3^{\frac{1}{2}}-i\right)\left(1+i\right)
All y newidyn w ddim fod yn hafal i 0 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â w.
2=\left(\frac{1}{4}\times 1+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Lluoswch \frac{1}{4} â 1+i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Gwnewch y gwaith lluosi yn \frac{1}{4}\times 1+\frac{1}{4}i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w
Defnyddio’r briodwedd ddosbarthu i luosi \left(\frac{1}{4}+\frac{1}{4}i\right)w â 3^{\frac{1}{2}}-i.
\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)w+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Aildrefnu'r termau.
\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w=2
Cyfuno pob term sy'n cynnwys w.
\frac{\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Rhannu’r ddwy ochr â \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Mae rhannu â \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right) yn dad-wneud lluosi â \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{8}{\sqrt{3}\left(1+i\right)+\left(1-i\right)}
Rhannwch 2 â \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).