Enrhifo
1-\sqrt{2}\approx -0.414213562
Ffactor
1-\sqrt{2}
Rhannu
Copïo i clipfwrdd
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Mae'n rhesymoli enwadur \frac{2}{\sqrt{2}-2} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}+2.
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Ystyriwch \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{2}+2\right)}{2-4}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Sgwâr \sqrt{2}. Sgwâr 2.
\frac{2\left(\sqrt{2}+2\right)}{-2}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Tynnu 4 o 2 i gael -2.
-\left(\sqrt{2}+2\right)+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Canslo -2 a -2.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{\sqrt{32}}{2}
Mae'n rhesymoli enwadur \frac{\sqrt{2}+1}{\sqrt{2}-1} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}+1.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{\sqrt{32}}{2}
Ystyriwch \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{2-1}-\frac{\sqrt{32}}{2}
Sgwâr \sqrt{2}. Sgwâr 1.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{1}-\frac{\sqrt{32}}{2}
Tynnu 1 o 2 i gael 1.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)-\frac{\sqrt{32}}{2}
Mae rhannu unrhyw beth ag un yn rhoi'r rhif hwnnw.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{\sqrt{32}}{2}
Lluosi \sqrt{2}+1 a \sqrt{2}+1 i gael \left(\sqrt{2}+1\right)^{2}.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{4\sqrt{2}}{2}
Ffactora 32=4^{2}\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{4^{2}\times 2} fel lluoswm ail israddau \sqrt{4^{2}}\sqrt{2}. Cymryd isradd 4^{2}.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
Rhannu 4\sqrt{2} â 2 i gael 2\sqrt{2}.
-\sqrt{2}-2+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
I ddod o hyd i wrthwyneb \sqrt{2}+2, dewch o hyd i wrthwyneb pob term.
-\sqrt{2}-2+\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\sqrt{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(\sqrt{2}+1\right)^{2}.
-\sqrt{2}-2+2+2\sqrt{2}+1-2\sqrt{2}
Sgwâr \sqrt{2} yw 2.
-\sqrt{2}-2+3+2\sqrt{2}-2\sqrt{2}
Adio 2 a 1 i gael 3.
-\sqrt{2}+1+2\sqrt{2}-2\sqrt{2}
Adio -2 a 3 i gael 1.
\sqrt{2}+1-2\sqrt{2}
Cyfuno -\sqrt{2} a 2\sqrt{2} i gael \sqrt{2}.
-\sqrt{2}+1
Cyfuno \sqrt{2} a -2\sqrt{2} i gael -\sqrt{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}