Datrys ar gyfer x
x=-\frac{15k^{2}}{4}-12k+13
k\neq 8
Datrys ar gyfer k (complex solution)
\left\{\begin{matrix}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&\text{unconditionally}\\k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\end{matrix}\right.
Datrys ar gyfer k
\left\{\begin{matrix}k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\text{ and }x\leq \frac{113}{5}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\leq \frac{113}{5}\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Lluoswch ddwy ochr yr hafaliad wrth 4\left(k-8\right)^{2}, lluoswm cyffredin lleiaf 4,\left(8-k\right)^{2}.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(k-8\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(1-x\right)\right)
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(2k+2\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-1+x\right)
I ddod o hyd i wrthwyneb 1-x, dewch o hyd i wrthwyneb pob term.
k^{2}-16k+64=4\left(4k^{2}+8k+3+x\right)
Tynnu 1 o 4 i gael 3.
k^{2}-16k+64=16k^{2}+32k+12+4x
Defnyddio’r briodwedd ddosbarthu i luosi 4 â 4k^{2}+8k+3+x.
16k^{2}+32k+12+4x=k^{2}-16k+64
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
32k+12+4x=k^{2}-16k+64-16k^{2}
Tynnu 16k^{2} o'r ddwy ochr.
32k+12+4x=-15k^{2}-16k+64
Cyfuno k^{2} a -16k^{2} i gael -15k^{2}.
12+4x=-15k^{2}-16k+64-32k
Tynnu 32k o'r ddwy ochr.
12+4x=-15k^{2}-48k+64
Cyfuno -16k a -32k i gael -48k.
4x=-15k^{2}-48k+64-12
Tynnu 12 o'r ddwy ochr.
4x=-15k^{2}-48k+52
Tynnu 12 o 64 i gael 52.
4x=52-48k-15k^{2}
Mae'r hafaliad yn y ffurf safonol.
\frac{4x}{4}=\frac{52-48k-15k^{2}}{4}
Rhannu’r ddwy ochr â 4.
x=\frac{52-48k-15k^{2}}{4}
Mae rhannu â 4 yn dad-wneud lluosi â 4.
x=-\frac{15k^{2}}{4}-12k+13
Rhannwch -15k^{2}-48k+52 â 4.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}