Datrys ar gyfer x (complex solution)
x=\frac{4225+65\sqrt{4223}i}{16}\approx 264.0625+263.999992602i
x=\frac{-65\sqrt{4223}i+4225}{16}\approx 264.0625-263.999992602i
Graff
Rhannu
Copïo i clipfwrdd
\frac{-32x^{2}}{16900}+x=264
Cyfrifo 130 i bŵer 2 a chael 16900.
-\frac{8}{4225}x^{2}+x=264
Rhannu -32x^{2} â 16900 i gael -\frac{8}{4225}x^{2}.
-\frac{8}{4225}x^{2}+x-264=0
Tynnu 264 o'r ddwy ochr.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch -\frac{8}{4225} am a, 1 am b, a -264 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Sgwâr 1.
x=\frac{-1±\sqrt{1+\frac{32}{4225}\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Lluoswch -4 â -\frac{8}{4225}.
x=\frac{-1±\sqrt{1-\frac{8448}{4225}}}{2\left(-\frac{8}{4225}\right)}
Lluoswch \frac{32}{4225} â -264.
x=\frac{-1±\sqrt{-\frac{4223}{4225}}}{2\left(-\frac{8}{4225}\right)}
Adio 1 at -\frac{8448}{4225}.
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{2\left(-\frac{8}{4225}\right)}
Cymryd isradd -\frac{4223}{4225}.
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}}
Lluoswch 2 â -\frac{8}{4225}.
x=\frac{\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
Datryswch yr hafaliad x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} pan fydd ± yn plws. Adio -1 at \frac{i\sqrt{4223}}{65}.
x=\frac{-65\sqrt{4223}i+4225}{16}
Rhannwch -1+\frac{i\sqrt{4223}}{65} â -\frac{16}{4225} drwy luosi -1+\frac{i\sqrt{4223}}{65} â chilydd -\frac{16}{4225}.
x=\frac{-\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
Datryswch yr hafaliad x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} pan fydd ± yn minws. Tynnu \frac{i\sqrt{4223}}{65} o -1.
x=\frac{4225+65\sqrt{4223}i}{16}
Rhannwch -1-\frac{i\sqrt{4223}}{65} â -\frac{16}{4225} drwy luosi -1-\frac{i\sqrt{4223}}{65} â chilydd -\frac{16}{4225}.
x=\frac{-65\sqrt{4223}i+4225}{16} x=\frac{4225+65\sqrt{4223}i}{16}
Mae’r hafaliad wedi’i ddatrys nawr.
\frac{-32x^{2}}{16900}+x=264
Cyfrifo 130 i bŵer 2 a chael 16900.
-\frac{8}{4225}x^{2}+x=264
Rhannu -32x^{2} â 16900 i gael -\frac{8}{4225}x^{2}.
\frac{-\frac{8}{4225}x^{2}+x}{-\frac{8}{4225}}=\frac{264}{-\frac{8}{4225}}
Rhannu dwy ochr hafaliad â -\frac{8}{4225}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x^{2}+\frac{1}{-\frac{8}{4225}}x=\frac{264}{-\frac{8}{4225}}
Mae rhannu â -\frac{8}{4225} yn dad-wneud lluosi â -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x=\frac{264}{-\frac{8}{4225}}
Rhannwch 1 â -\frac{8}{4225} drwy luosi 1 â chilydd -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x=-139425
Rhannwch 264 â -\frac{8}{4225} drwy luosi 264 â chilydd -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x+\left(-\frac{4225}{16}\right)^{2}=-139425+\left(-\frac{4225}{16}\right)^{2}
Rhannwch -\frac{4225}{8}, cyfernod y term x, â 2 i gael -\frac{4225}{16}. Yna ychwanegwch sgwâr -\frac{4225}{16} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-139425+\frac{17850625}{256}
Sgwariwch -\frac{4225}{16} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-\frac{17842175}{256}
Adio -139425 at \frac{17850625}{256}.
\left(x-\frac{4225}{16}\right)^{2}=-\frac{17842175}{256}
Ffactora x^{2}-\frac{4225}{8}x+\frac{17850625}{256}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4225}{16}\right)^{2}}=\sqrt{-\frac{17842175}{256}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{4225}{16}=\frac{65\sqrt{4223}i}{16} x-\frac{4225}{16}=-\frac{65\sqrt{4223}i}{16}
Symleiddio.
x=\frac{4225+65\sqrt{4223}i}{16} x=\frac{-65\sqrt{4223}i+4225}{16}
Adio \frac{4225}{16} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}