Enrhifo
\frac{61}{6}\approx 10.166666667
Ffactor
\frac{61}{2 \cdot 3} = 10\frac{1}{6} = 10.166666666666666
Rhannu
Copïo i clipfwrdd
\frac{2.5\times 0.8}{\frac{4-2.75}{6.25}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Tynnu 3.75 o 6.25 i gael 2.5.
\frac{2}{\frac{4-2.75}{6.25}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Lluosi 2.5 a 0.8 i gael 2.
\frac{2}{\frac{1.25}{6.25}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Tynnu 2.75 o 4 i gael 1.25.
\frac{2}{\frac{125}{625}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Ehangu \frac{1.25}{6.25} drwy luosi'r rhifiadur a'r enwadur gyda 100.
\frac{2}{\frac{1}{5}}+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Lleihau'r ffracsiwn \frac{125}{625} i'r graddau lleiaf posib drwy dynnu a chanslo allan 125.
2\times 5+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Rhannwch 2 â \frac{1}{5} drwy luosi 2 â chilydd \frac{1}{5}.
10+\frac{\frac{2.5+0.75}{3.25}}{\left(40-38.8\right)\times 5}
Lluosi 2 a 5 i gael 10.
10+\frac{\frac{3.25}{3.25}}{\left(40-38.8\right)\times 5}
Adio 2.5 a 0.75 i gael 3.25.
10+\frac{1}{\left(40-38.8\right)\times 5}
Rhannu 3.25 â 3.25 i gael 1.
10+\frac{1}{1.2\times 5}
Tynnu 38.8 o 40 i gael 1.2.
10+\frac{1}{6}
Lluosi 1.2 a 5 i gael 6.
\frac{60}{6}+\frac{1}{6}
Troswch y rhif degol 10 i’r ffracsiwn \frac{60}{6}.
\frac{60+1}{6}
Gan fod gan \frac{60}{6} a \frac{1}{6} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{61}{6}
Adio 60 a 1 i gael 61.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}