Datrys ar gyfer x
x=\frac{28\log_{3}\left(11\right)}{5}+5\approx 17.222886696
Datrys ar gyfer x (complex solution)
x=\frac{2\pi n_{1}i}{5\ln(3)}+\frac{28\log_{3}\left(11\right)}{5}+5
n_{1}\in \mathrm{Z}
Graff
Rhannu
Copïo i clipfwrdd
\frac{33^{28}}{3^{3}}=3^{5x}
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion. Lluoswch 7 a 4 i gael 28.
\frac{3299060778251569566188233498374847942355841}{3^{3}}=3^{5x}
Cyfrifo 33 i bŵer 28 a chael 3299060778251569566188233498374847942355841.
\frac{3299060778251569566188233498374847942355841}{27}=3^{5x}
Cyfrifo 3 i bŵer 3 a chael 27.
122187436231539613562527166606475849716883=3^{5x}
Rhannu 3299060778251569566188233498374847942355841 â 27 i gael 122187436231539613562527166606475849716883.
3^{5x}=122187436231539613562527166606475849716883
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\log(3^{5x})=\log(122187436231539613562527166606475849716883)
Cymryd logarithm dwy ochr yr hafaliad.
5x\log(3)=\log(122187436231539613562527166606475849716883)
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
5x=\frac{\log(122187436231539613562527166606475849716883)}{\log(3)}
Rhannu’r ddwy ochr â \log(3).
5x=\log_{3}\left(122187436231539613562527166606475849716883\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{3}\left(122187436231539613562527166606475849716883\right)}{5}
Rhannu’r ddwy ochr â 5.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}