Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Datrys ar gyfer x (complex solution)
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

\frac{33^{28}}{3^{3}}=3^{5x}
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion. Lluoswch 7 a 4 i gael 28.
\frac{3299060778251569566188233498374847942355841}{3^{3}}=3^{5x}
Cyfrifo 33 i bŵer 28 a chael 3299060778251569566188233498374847942355841.
\frac{3299060778251569566188233498374847942355841}{27}=3^{5x}
Cyfrifo 3 i bŵer 3 a chael 27.
122187436231539613562527166606475849716883=3^{5x}
Rhannu 3299060778251569566188233498374847942355841 â 27 i gael 122187436231539613562527166606475849716883.
3^{5x}=122187436231539613562527166606475849716883
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\log(3^{5x})=\log(122187436231539613562527166606475849716883)
Cymryd logarithm dwy ochr yr hafaliad.
5x\log(3)=\log(122187436231539613562527166606475849716883)
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
5x=\frac{\log(122187436231539613562527166606475849716883)}{\log(3)}
Rhannu’r ddwy ochr â \log(3).
5x=\log_{3}\left(122187436231539613562527166606475849716883\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{3}\left(122187436231539613562527166606475849716883\right)}{5}
Rhannu’r ddwy ochr â 5.