Enrhifo
-\frac{\sqrt{3}}{4}+\frac{1}{2}\approx 0.066987298
Ffactor
\frac{2 - \sqrt{3}}{4} = 0.0669872981077807
Rhannu
Copïo i clipfwrdd
\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}
Lluosi \frac{\sqrt{6}-\sqrt{2}}{4} a \frac{\sqrt{6}-\sqrt{2}}{4} i gael \left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}
I godi \frac{\sqrt{6}-\sqrt{2}}{4} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{6}-\sqrt{2}\right)^{2}.
\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Sgwâr \sqrt{6} yw 6.
\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Ffactora 6=2\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 3} fel lluoswm ail israddau \sqrt{2}\sqrt{3}.
\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Lluosi -2 a 2 i gael -4.
\frac{6-4\sqrt{3}+2}{4^{2}}
Sgwâr \sqrt{2} yw 2.
\frac{8-4\sqrt{3}}{4^{2}}
Adio 6 a 2 i gael 8.
\frac{8-4\sqrt{3}}{16}
Cyfrifo 4 i bŵer 2 a chael 16.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}