Datrys ar gyfer t
t = \frac{2 \sqrt{3} + 3 \sqrt{2}}{6} \approx 1.28445705
Rhannu
Copïo i clipfwrdd
\frac{\sqrt{6}}{\sqrt{6}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
I luosi \sqrt{2} a \sqrt{3}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{\sqrt{6}\sqrt{6}}{\left(\sqrt{6}\right)^{2}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Mae'n rhesymoli enwadur \frac{\sqrt{6}}{\sqrt{6}t} drwy luosi'r rhifiadur a'r enwadur â \sqrt{6}.
\frac{\sqrt{6}\sqrt{6}}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Sgwâr \sqrt{6} yw 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Lluosi \sqrt{6} a \sqrt{6} i gael 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Ystyriwch \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Sgwâr \sqrt{2}. Sgwâr \sqrt{3}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Tynnu 3 o 2 i gael -1.
\frac{6}{6t}=-\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)
Mae unrhyw beth sy'n cael ei rannu â -1 yn rhoi'r gwrthwyneb.
\frac{6}{6t}=-\left(\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Defnyddio’r briodwedd ddosbarthu i luosi \sqrt{6} â \sqrt{2}-\sqrt{3}.
\frac{6}{6t}=-\left(\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Ffactora 6=2\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 3} fel lluoswm ail israddau \sqrt{2}\sqrt{3}.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{6}\sqrt{3}\right)
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}\right)
Ffactora 6=3\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{3\times 2} fel lluoswm ail israddau \sqrt{3}\sqrt{2}.
\frac{6}{6t}=-\left(2\sqrt{3}-3\sqrt{2}\right)
Lluosi \sqrt{3} a \sqrt{3} i gael 3.
\frac{6}{6t}=-2\sqrt{3}+3\sqrt{2}
I ddod o hyd i wrthwyneb 2\sqrt{3}-3\sqrt{2}, dewch o hyd i wrthwyneb pob term.
6=-2\sqrt{3}\times 6t+3\sqrt{2}\times 6t
All y newidyn t ddim fod yn hafal i 0 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â 6t.
6=3\times 6\sqrt{2}t-2\times 6\sqrt{3}t
Aildrefnu'r termau.
6=18\sqrt{2}t-12\sqrt{3}t
Gwnewch y gwaith lluosi.
18\sqrt{2}t-12\sqrt{3}t=6
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(18\sqrt{2}-12\sqrt{3}\right)t=6
Cyfuno pob term sy'n cynnwys t.
\frac{\left(18\sqrt{2}-12\sqrt{3}\right)t}{18\sqrt{2}-12\sqrt{3}}=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Rhannu’r ddwy ochr â 18\sqrt{2}-12\sqrt{3}.
t=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Mae rhannu â 18\sqrt{2}-12\sqrt{3} yn dad-wneud lluosi â 18\sqrt{2}-12\sqrt{3}.
t=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}
Rhannwch 6 â 18\sqrt{2}-12\sqrt{3}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}