Enrhifo
\sqrt{3}-2\approx -0.267949192
Rhannu
Copïo i clipfwrdd
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Mae'n rhesymoli enwadur \frac{\sqrt{3}-3}{\sqrt{3}+3} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}-3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Ystyriwch \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{3-9}
Sgwâr \sqrt{3}. Sgwâr 3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{-6}
Tynnu 9 o 3 i gael -6.
\frac{\left(\sqrt{3}-3\right)^{2}}{-6}
Lluosi \sqrt{3}-3 a \sqrt{3}-3 i gael \left(\sqrt{3}-3\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-6\sqrt{3}+9}{-6}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{3}-3\right)^{2}.
\frac{3-6\sqrt{3}+9}{-6}
Sgwâr \sqrt{3} yw 3.
\frac{12-6\sqrt{3}}{-6}
Adio 3 a 9 i gael 12.
-2+\sqrt{3}
Rhannu pob term 12-6\sqrt{3} â -6 i gael -2+\sqrt{3}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}