Enrhifo
\sqrt{2}+2\approx 3.414213562
Rhannu
Copïo i clipfwrdd
\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1}
Ffactora 12=2^{2}\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 3} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{3}. Cymryd isradd 2^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Mae'n rhesymoli enwadur \frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}-1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Ystyriwch \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{3-1}
Sgwâr \sqrt{3}. Sgwâr 1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{2}
Tynnu 1 o 3 i gael 2.
\frac{2\left(\sqrt{3}\right)^{2}-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Cyfrifwch y briodoledd ddosrannol drwy luosi pob 2\sqrt{3}+\sqrt{6}+\sqrt{2}+2 gan bob \sqrt{3}-1.
\frac{2\times 3-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Sgwâr \sqrt{3} yw 3.
\frac{6-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Lluosi 2 a 3 i gael 6.
\frac{6-2\sqrt{3}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Ffactora 6=3\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{3\times 2} fel lluoswm ail israddau \sqrt{3}\sqrt{2}.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Lluosi \sqrt{3} a \sqrt{3} i gael 3.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}+2\sqrt{3}-2}{2}
I luosi \sqrt{2} a \sqrt{3}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{2}+2\sqrt{3}-2}{2}
Cyfuno -\sqrt{6} a \sqrt{6} i gael 0.
\frac{6-2\sqrt{3}+2\sqrt{2}+2\sqrt{3}-2}{2}
Cyfuno 3\sqrt{2} a -\sqrt{2} i gael 2\sqrt{2}.
\frac{6+2\sqrt{2}-2}{2}
Cyfuno -2\sqrt{3} a 2\sqrt{3} i gael 0.
\frac{4+2\sqrt{2}}{2}
Tynnu 2 o 6 i gael 4.
2+\sqrt{2}
Rhannu pob term 4+2\sqrt{2} â 2 i gael 2+\sqrt{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}