Enrhifo
\frac{2}{3\left(1-t^{2}\right)}
Ehangu
\frac{2}{3\left(1-t^{2}\right)}
Rhannu
Copïo i clipfwrdd
\frac{\frac{-t+1}{\left(t+1\right)\left(-t+1\right)}+\frac{t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin 1+t a 1-t yw \left(t+1\right)\left(-t+1\right). Lluoswch \frac{1}{1+t} â \frac{-t+1}{-t+1}. Lluoswch \frac{1}{1-t} â \frac{t+1}{t+1}.
\frac{\frac{-t+1+t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Gan fod gan \frac{-t+1}{\left(t+1\right)\left(-t+1\right)} a \frac{t+1}{\left(t+1\right)\left(-t+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Cyfuno termau tebyg yn -t+1+t+1.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-\frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 2 â \frac{\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}.
\frac{\frac{2-2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Gan fod gan \frac{2}{\left(t+1\right)\left(-t+1\right)} a \frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\frac{2+2t^{2}-2t+2t-2}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Gwnewch y gwaith lluosi yn 2-2\left(t+1\right)\left(-t+1\right).
\frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Cyfuno termau tebyg yn 2+2t^{2}-2t+2t-2.
\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)\times 3t^{2}}
Mynegwch \frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}} fel ffracsiwn unigol.
\frac{2}{3\left(t+1\right)\left(-t+1\right)}
Canslo t^{2} yn y rhifiadur a'r enwadur.
\frac{2}{\left(3t+3\right)\left(-t+1\right)}
Defnyddio’r briodwedd ddosbarthu i luosi 3 â t+1.
\frac{2}{-3t^{2}+3}
Defnyddio’r briodwedd ddosbarthu i luosi 3t+3 â -t+1 a chyfuno termau tebyg.
\frac{\frac{-t+1}{\left(t+1\right)\left(-t+1\right)}+\frac{t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin 1+t a 1-t yw \left(t+1\right)\left(-t+1\right). Lluoswch \frac{1}{1+t} â \frac{-t+1}{-t+1}. Lluoswch \frac{1}{1-t} â \frac{t+1}{t+1}.
\frac{\frac{-t+1+t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Gan fod gan \frac{-t+1}{\left(t+1\right)\left(-t+1\right)} a \frac{t+1}{\left(t+1\right)\left(-t+1\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Cyfuno termau tebyg yn -t+1+t+1.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-\frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 2 â \frac{\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}.
\frac{\frac{2-2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Gan fod gan \frac{2}{\left(t+1\right)\left(-t+1\right)} a \frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\frac{2+2t^{2}-2t+2t-2}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Gwnewch y gwaith lluosi yn 2-2\left(t+1\right)\left(-t+1\right).
\frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Cyfuno termau tebyg yn 2+2t^{2}-2t+2t-2.
\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)\times 3t^{2}}
Mynegwch \frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}} fel ffracsiwn unigol.
\frac{2}{3\left(t+1\right)\left(-t+1\right)}
Canslo t^{2} yn y rhifiadur a'r enwadur.
\frac{2}{\left(3t+3\right)\left(-t+1\right)}
Defnyddio’r briodwedd ddosbarthu i luosi 3 â t+1.
\frac{2}{-3t^{2}+3}
Defnyddio’r briodwedd ddosbarthu i luosi 3t+3 â -t+1 a chyfuno termau tebyg.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}