Datrys ar gyfer D_0
D_{0}=\frac{4000XY+40000Y-58000Y_{3}}{4077}
Datrys ar gyfer X
\left\{\begin{matrix}X=\frac{4077D_{0}-40000Y+58000Y_{3}}{4000Y}\text{, }&Y\neq 0\\X\in \mathrm{R}\text{, }&Y_{3}=-\frac{4077D_{0}}{58000}\text{ and }Y=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
26Y_{3}-25Y-\left(2XY-3Y_{3}-5Y\right)=-2.0385D_{0}
Cyfuno 35Y_{3} a -9Y_{3} i gael 26Y_{3}.
26Y_{3}-25Y-2XY+3Y_{3}+5Y=-2.0385D_{0}
I ddod o hyd i wrthwyneb 2XY-3Y_{3}-5Y, dewch o hyd i wrthwyneb pob term.
29Y_{3}-25Y-2XY+5Y=-2.0385D_{0}
Cyfuno 26Y_{3} a 3Y_{3} i gael 29Y_{3}.
29Y_{3}-20Y-2XY=-2.0385D_{0}
Cyfuno -25Y a 5Y i gael -20Y.
-2.0385D_{0}=29Y_{3}-20Y-2XY
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{-2.0385D_{0}}{-2.0385}=\frac{29Y_{3}-20Y-2XY}{-2.0385}
Rhannu dwy ochr hafaliad â -2.0385, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
D_{0}=\frac{29Y_{3}-20Y-2XY}{-2.0385}
Mae rhannu â -2.0385 yn dad-wneud lluosi â -2.0385.
D_{0}=\frac{4000XY+40000Y-58000Y_{3}}{4077}
Rhannwch 29Y_{3}-20Y-2XY â -2.0385 drwy luosi 29Y_{3}-20Y-2XY â chilydd -2.0385.
26Y_{3}-25Y-\left(2XY-3Y_{3}-5Y\right)=-2.0385D_{0}
Cyfuno 35Y_{3} a -9Y_{3} i gael 26Y_{3}.
26Y_{3}-25Y-2XY+3Y_{3}+5Y=-2.0385D_{0}
I ddod o hyd i wrthwyneb 2XY-3Y_{3}-5Y, dewch o hyd i wrthwyneb pob term.
29Y_{3}-25Y-2XY+5Y=-2.0385D_{0}
Cyfuno 26Y_{3} a 3Y_{3} i gael 29Y_{3}.
29Y_{3}-20Y-2XY=-2.0385D_{0}
Cyfuno -25Y a 5Y i gael -20Y.
-20Y-2XY=-2.0385D_{0}-29Y_{3}
Tynnu 29Y_{3} o'r ddwy ochr.
-2XY=-2.0385D_{0}-29Y_{3}+20Y
Ychwanegu 20Y at y ddwy ochr.
\left(-2Y\right)X=-\frac{4077D_{0}}{2000}+20Y-29Y_{3}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-2Y\right)X}{-2Y}=\frac{-\frac{4077D_{0}}{2000}+20Y-29Y_{3}}{-2Y}
Rhannu’r ddwy ochr â -2Y.
X=\frac{-\frac{4077D_{0}}{2000}+20Y-29Y_{3}}{-2Y}
Mae rhannu â -2Y yn dad-wneud lluosi â -2Y.
X=\frac{\frac{29Y_{3}}{2}+\frac{4077D_{0}}{4000}}{Y}-10
Rhannwch -29Y_{3}-\frac{4077D_{0}}{2000}+20Y â -2Y.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}