Enrhifo
x^{12}
Gwahaniaethu w.r.t. x
12x^{11}
Graff
Rhannu
Copïo i clipfwrdd
\left(x^{3}\right)^{4}
Defnyddio rheolau esbonyddion i symleiddio’r mynegiad.
x^{3\times 4}
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion.
x^{12}
Lluoswch 3 â 4.
4\left(x^{3}\right)^{4-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})
Os yw F yn gyfansoddiad dwy ffwythiant y mae modd eu gwahaniaethu f\left(u\right) a u=g\left(x\right), hynny yw, os yw F\left(x\right)=f\left(g\left(x\right)\right), yna deilliad F yw deilliad o f mewn cysylltiad â u wedi’i luosi â deilliad g mewn cysylltiad â x, hynny yw\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
4\left(x^{3}\right)^{3}\times 3x^{3-1}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
12x^{2}\left(x^{3}\right)^{3}
Symleiddio.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}