Přejít k hlavnímu obsahu
Microsoft
|
Math Solver
Vyřešit
Cvičení
Hrát
Témata
Elementární algebra
Průměr
Modus
Největší společný faktor
Nejmenší společný násobek
Pořadí operací
Zlomky
Smíšené zlomky
Prvočíselný rozklad
Exponenty
Radikály
Algebra
Kombinovat podobné podmínky
Vyřešte proměnnou
Faktor
Rozbalit
Vyhodnotit zlomky
Lineární rovnice
Kvadratické rovnice
Nerovnosti
Soustavy rovnic
Matice
Trigonometrie
Zjednodušit
Vyhodnotit
Grafy
Vyřešte rovnice
Kalkulus
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy kalkulu
Maticové vstupy
Vyřešit
Cvičení
Hrát
Témata
Elementární algebra
Průměr
Modus
Největší společný faktor
Nejmenší společný násobek
Pořadí operací
Zlomky
Smíšené zlomky
Prvočíselný rozklad
Exponenty
Radikály
Algebra
Kombinovat podobné podmínky
Vyřešte proměnnou
Faktor
Rozbalit
Vyhodnotit zlomky
Lineární rovnice
Kvadratické rovnice
Nerovnosti
Soustavy rovnic
Matice
Trigonometrie
Zjednodušit
Vyhodnotit
Grafy
Vyřešte rovnice
Kalkulus
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy kalkulu
Maticové vstupy
Základní
algebra
trigonometrie
Kalkulus
statistiky
matice
Znaky
Vyhodnotit
-1
Kvíz
Trigonometry
\sec ( 180 )
Podobné úlohy z vyhledávání na webu
What is the exact value of \displaystyle{\sec{{180}}} ?
https://socratic.org/questions/what-is-the-exact-value-of-sec-180
Nghi N. May 22, 2015 \displaystyle{\sec{{180}}}=\frac{{1}}{{\cos{{180}}}}=\frac{{1}}{{-{{1}}}}=-{1}
How do you evaluate \displaystyle{\sec{{\left({18}\pi\right)}}} ?
https://socratic.org/questions/how-do-you-evaluate-sec-18pi
\displaystyle{\sec{{\left({18}\pi\right)}}}={1} Explanation: \displaystyle{\sec{{\left({18}\pi\right)}}}=\frac{{1}}{{{\cos{{\left({18}\pi\right)}}}}} Since the cosine graph is oscillatory ...
How do you find the exact value of \displaystyle{\sec{{120}}} ?
https://socratic.org/questions/how-do-you-find-the-exact-value-of-sec120
\displaystyle{{\sec{{120}}}^{\circ}=}-{2} Explanation: Using the \displaystyle\text{trigonometric identity} \displaystyle{\left(\overline{{\underline{{{\left|{\left(\frac{{2}}{{2}}\right)}{\left({\sec{\theta}}=\frac{{1}}{{\cos{\theta}}};{\cos{\theta}}≠{0}\right)}{\left(\frac{{2}}{{2}}\right)}\right|}}}}}\right)} ...
How do you evaluate \displaystyle{\sec{{137}}} ?
https://socratic.org/questions/how-do-you-evaluate-sec-137
\displaystyle{{\sec{{137}}}^{\circ}=}-{1.3672} Explanation: \displaystyle{{\sec{{137}}}^{\circ}=}\frac{{1}}{{\cos{{\left({137}^{\circ}\right)}}}}=\frac{{1}}{{\cos{{\left({180}-{137}^{\circ}\right)}}}} ...
How do you find the exact value of \displaystyle{\sec{{165}}} using the half angle formula?
https://socratic.org/questions/how-do-you-find-the-exact-value-of-sec165-using-the-half-angle-formula
\displaystyle-\frac{{{2}}}{{\sqrt{{{2}+\sqrt{{3}}}}}} Explanation: Use the trig identity: \displaystyle{2}{{\cos}^{{2}}{a}}={1}+{\cos{{2}}}{a}. (1) In this case a = 165, and 2a = 330. sec ...
How do you evaluate \displaystyle{\sec{{780}}} ?
https://socratic.org/questions/how-do-you-evaluate-sec-780
2 Explanation: \displaystyle{\sec{{\left({780}\right)}}}=\frac{{1}}{{{\cos{{780}}}}}. Find cos (780). \displaystyle{\cos{{\left({780}\right)}}}={\cos{{\left({60}+{2}{\left({360}\right)}\right)}}}={\cos{{60}}} ...
Více položek
Sdílet
Kopírovat
Zkopírováno do schránky
Podobné příklady
\cos ( \pi )
\sin ( \frac { \pi } { 2 } )
\tan ( \frac { 4 \pi } { 3 } )
\csc ( 60 )
\sec ( 180 )
\cot ( \frac { 4 \pi } { 3 } )
Zpět na začátek