Amil
\left(x-4\right)\left(x-3\right)
Qiymətləndir
\left(x-4\right)\left(x-3\right)
Qrafik
Sorğu
Polynomial
x^2-7x+12
Paylaş
Panoya köçürüldü
a+b=-7 ab=1\times 12=12
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə x^{2}+ax+bx+12 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,-12 -2,-6 -3,-4
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b mənfi olduğu üçün a və b hər ikisi mənfidir. 12 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1-12=-13 -2-6=-8 -3-4=-7
Hər cüt üçün cəmi hesablayın.
a=-4 b=-3
Həll -7 cəmini verən cütdür.
\left(x^{2}-4x\right)+\left(-3x+12\right)
x^{2}-7x+12 \left(x^{2}-4x\right)+\left(-3x+12\right) kimi yenidən yazılsın.
x\left(x-4\right)-3\left(x-4\right)
Birinci qrupda x ədədini və ikinci qrupda isə -3 ədədini vurub çıxarın.
\left(x-4\right)\left(x-3\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-4 ümumi ifadəsi vurulanlara ayrılsın.
x^{2}-7x+12=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Kvadrat -7.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
-4 ədədini 12 dəfə vurun.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
49 -48 qrupuna əlavə edin.
x=\frac{-\left(-7\right)±1}{2}
1 kvadrat kökünü alın.
x=\frac{7±1}{2}
-7 rəqəminin əksi budur: 7.
x=\frac{8}{2}
İndi ± plyus olsa x=\frac{7±1}{2} tənliyini həll edin. 7 1 qrupuna əlavə edin.
x=4
8 ədədini 2 ədədinə bölün.
x=\frac{6}{2}
İndi ± minus olsa x=\frac{7±1}{2} tənliyini həll edin. 7 ədədindən 1 ədədini çıxın.
x=3
6 ədədini 2 ədədinə bölün.
x^{2}-7x+12=\left(x-4\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 4 və x_{2} üçün 3 əvəzləyici.