\left\{ \begin{array} { l } { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x = \frac{22}{5} = 4\frac{2}{5} = 4.4
y = \frac{27}{5} = 5\frac{2}{5} = 5.4
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
8x+2y=46,7x+3y=47
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
8x+2y=46
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
8x=-2y+46
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x=\frac{1}{8}\left(-2y+46\right)
8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{4}y+\frac{23}{4}
\frac{1}{8} বাৰ -2y+46 পুৰণ কৰক৷
7\left(-\frac{1}{4}y+\frac{23}{4}\right)+3y=47
অন্য সমীকৰণত x-ৰ বাবে \frac{-y+23}{4} স্থানাপন কৰক, 7x+3y=47৷
-\frac{7}{4}y+\frac{161}{4}+3y=47
7 বাৰ \frac{-y+23}{4} পুৰণ কৰক৷
\frac{5}{4}y+\frac{161}{4}=47
3y লৈ -\frac{7y}{4} যোগ কৰক৷
\frac{5}{4}y=\frac{27}{4}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{161}{4} বিয়োগ কৰক৷
y=\frac{27}{5}
\frac{5}{4}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{1}{4}\times \frac{27}{5}+\frac{23}{4}
x=-\frac{1}{4}y+\frac{23}{4}-ত y-ৰ বাবে \frac{27}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{27}{20}+\frac{23}{4}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{1}{4} বাৰ \frac{27}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{22}{5}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{27}{20} লৈ \frac{23}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{22}{5},y=\frac{27}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
8x+2y=46,7x+3y=47
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
2\times 2 মেট্রিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ৰ বাবে, বিপৰীত মেট্ৰিক্স হৈছে \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), গতিকে মেট্ৰিক্স সমীকৰণক এটা মেট্ৰিক্স পূৰণৰ সমস্যাৰূপে পুনৰ লিখিব পাৰি৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}\\\frac{27}{5}\end{matrix}\right)
গণনা কৰক৷
x=\frac{22}{5},y=\frac{27}{5}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
8x+2y=46,7x+3y=47
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
7\times 8x+7\times 2y=7\times 46,8\times 7x+8\times 3y=8\times 47
8x আৰু 7x সমান কৰিবৰ বাবে, 7-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 8-ৰ দ্বাৰা পুৰণ কৰক৷
56x+14y=322,56x+24y=376
সৰলীকৰণ৷
56x-56x+14y-24y=322-376
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 56x+14y=322-ৰ পৰা 56x+24y=376 হৰণ কৰক৷
14y-24y=322-376
-56x লৈ 56x যোগ কৰক৷ চৰ্তাৱলী 56x আৰু -56x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-10y=322-376
-24y লৈ 14y যোগ কৰক৷
-10y=-54
-376 লৈ 322 যোগ কৰক৷
y=\frac{27}{5}
-10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
7x+3\times \frac{27}{5}=47
7x+3y=47-ত y-ৰ বাবে \frac{27}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
7x+\frac{81}{5}=47
3 বাৰ \frac{27}{5} পুৰণ কৰক৷
7x=\frac{154}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{81}{5} বিয়োগ কৰক৷
x=\frac{22}{5}
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{22}{5},y=\frac{27}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
অনুৰূপ সমস্যা
\left\{ \begin{array} { l } { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{array} \right.
\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.
\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { x = y + 2z } \\ { 3 x - z = 7 } \\ { 3 z - y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { a + b + c + d = 20 } \\ { 3a -2c = 3 } \\ { b + d = 6} \\ { c + b = 8 } \end{array} \right.