মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-6 ab=1\left(-160\right)=-160
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx-160 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-160 2,-80 4,-40 5,-32 8,-20 10,-16
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -160 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-160=-159 2-80=-78 4-40=-36 5-32=-27 8-20=-12 10-16=-6
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-16 b=10
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -6।
\left(x^{2}-16x\right)+\left(10x-160\right)
x^{2}-6x-160ক \left(x^{2}-16x\right)+\left(10x-160\right) হিচাপে পুনৰ লিখক।
x\left(x-16\right)+10\left(x-16\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 10ৰ গুণনীয়ক উলিয়াওক।
\left(x-16\right)\left(x+10\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-16ৰ গুণনীয়ক উলিয়াওক।
x^{2}-6x-160=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-160\right)}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-160\right)}}{2}
বৰ্গ -6৷
x=\frac{-\left(-6\right)±\sqrt{36+640}}{2}
-4 বাৰ -160 পুৰণ কৰক৷
x=\frac{-\left(-6\right)±\sqrt{676}}{2}
640 লৈ 36 যোগ কৰক৷
x=\frac{-\left(-6\right)±26}{2}
676-ৰ বৰ্গমূল লওক৷
x=\frac{6±26}{2}
-6ৰ বিপৰীত হৈছে 6৷
x=\frac{32}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{6±26}{2} সমাধান কৰক৷ 26 লৈ 6 যোগ কৰক৷
x=16
2-ৰ দ্বাৰা 32 হৰণ কৰক৷
x=-\frac{20}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{6±26}{2} সমাধান কৰক৷ 6-ৰ পৰা 26 বিয়োগ কৰক৷
x=-10
2-ৰ দ্বাৰা -20 হৰণ কৰক৷
x^{2}-6x-160=\left(x-16\right)\left(x-\left(-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 16 আৰু x_{2}ৰ বাবে -10 বিকল্প৷
x^{2}-6x-160=\left(x-16\right)\left(x+10\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷