跳到主要內容
Microsoft
|
Math Solver
解決
練習
玩
主題
代數前
意味 著
模式
最大的共同因素
最小公共倍數
動作順序
分數
混合分數
優質保理
指數
基
代數
組合類似條款
變數的求解
因素
擴大
評估分數
線性方程
二次方程
不等式
方程式系統
矩陣
三角
簡化
評價
圖
求解方程
微積分
衍生物
積分
限制
代數輸入
三角輸入
微積分輸入
矩陣輸入
解決
練習
玩
主題
代數前
意味 著
模式
最大的共同因素
最小公共倍數
動作順序
分數
混合分數
優質保理
指數
基
代數
組合類似條款
變數的求解
因素
擴大
評估分數
線性方程
二次方程
不等式
方程式系統
矩陣
三角
簡化
評價
圖
求解方程
微積分
衍生物
積分
限制
代數輸入
三角輸入
微積分輸入
矩陣輸入
基本
代數
三角
微積分
統計
矩陣
字元
評估
2^{5}\times 3^{2}\times 5
測驗
Algebra
factor(1440)
來自 Web 搜索的類似問題
factor9.12
https://www.tiger-algebra.com/drill/factor9.12/
(912/100) Final result : 228 ——— = 9.12000 25 Reformatting the input : Changes made to your input should not affect the solution: (1): "9.12" was replaced by "(912/100)". Step by step solution : ...
findlcm.5,4,2
https://www.tiger-algebra.com/drill/findlcm.5,4,2/
Error - Decimal point not allowed here lcm(5,4,2) LCM(5,4,2) Least Common Multiple is : 20 Calculate Least Common Multiple for : 5, 4 and 2 Factorize of the ...
The number of ordered triples (a, b, c) of positive integers which satisfy the simultaneous equations ab + bc = 44, ac + bc = 33
https://math.stackexchange.com/q/664860
Your solution is correct. Noe that a=1,b-c=11 and a=11, b-c=1 both lead to a+b=12+c. Then 33=ac+bc=(12+c)c indeed has no solution. [There's an alomost-soution: c=-1 gives -33; so I wonder ...
Determinant using factor theorem
https://math.stackexchange.com/q/2660747
Your attempt is fine. And all the further explanations you need are already given by user348749 in How to solve this determinant I could just rephrase this here: Since for x+y+z=0, all three ...
Cannot find length of repeating block in decimal expansion for \frac{17}{78}
https://math.stackexchange.com/questions/802448/cannot-find-length-of-repeating-block-in-decimal-expansion-for-frac1778
Note that the period for a prime p is a factor of \varphi (p)=p-1 but need not be equal to it. This is because 10^{p-1} \equiv 1 \mod p. The period is the least n for which p|(10^n-1). If ...
Find the vertices of the polytope
https://math.stackexchange.com/questions/295533/find-the-vertices-of-the-polytope
Write the first constraint as \sum_j a_{1j} = m, with m < n ( I am just replacing the variable x by m). Since a_{i1}+a_{i2} = 1, and a_{ij}\geq 0, we see that this is equivalent to a_{i2} = 1-a_{i1} ...
更多結果
共享
復制
已復制到剪貼板
類似問題
factor(100)
factor(42)
factor(662)
factor(330)
factor(1440)
factor(7700)
返回頂部