跳到主要內容
Microsoft
|
Math Solver
解決
練習
玩
主題
代數前
意味 著
模式
最大的共同因素
最小公共倍數
動作順序
分數
混合分數
優質保理
指數
基
代數
組合類似條款
變數的求解
因素
擴大
評估分數
線性方程
二次方程
不等式
方程式系統
矩陣
三角
簡化
評價
圖
求解方程
微積分
衍生物
積分
限制
代數輸入
三角輸入
微積分輸入
矩陣輸入
解決
練習
玩
主題
代數前
意味 著
模式
最大的共同因素
最小公共倍數
動作順序
分數
混合分數
優質保理
指數
基
代數
組合類似條款
變數的求解
因素
擴大
評估分數
線性方程
二次方程
不等式
方程式系統
矩陣
三角
簡化
評價
圖
求解方程
微積分
衍生物
積分
限制
代數輸入
三角輸入
微積分輸入
矩陣輸入
基本
代數
三角
微積分
統計
矩陣
字元
評估
0
測驗
Limits
\lim_{ x \rightarrow 0 } 5x
來自 Web 搜索的類似問題
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
更多結果
共享
復制
已復制到剪貼板
類似問題
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
返回頂部