解 w (復數求解)
w=z^{\frac{y}{x}}
x\neq 0
解 x (復數求解)
\left\{\begin{matrix}x=\frac{y\ln(z)}{\ln(w)+2\pi n_{1}i}\text{, }n_{1}\in \mathrm{Z}\text{, }&z\neq 1\text{ and }y\neq 0\text{ and }z\neq 0\text{ and }w\neq 1\text{ and }w\neq 0\\x\neq 0\text{, }&\left(z=0\text{ and }w=0\right)\text{ or }\left(z=1\text{ and }w=1\right)\text{ or }\left(y=0\text{ and }z\neq 0\text{ and }z\neq 1\text{ and }w=1\right)\end{matrix}\right.
解 w
w=z^{\frac{y}{x}}
\left(z>0\text{ and }x\neq 0\right)\text{ or }\left(z=0\text{ and }y>0\text{ and }x>0\right)\text{ or }\left(z=0\text{ and }y<0\text{ and }x<0\right)\text{ or }\left(z<0\text{ and }x\neq 0\text{ and }Denominator(\frac{y}{x})\text{bmod}2=1\right)
解 x
\left\{\begin{matrix}x=y\log_{w}\left(z\right)\text{, }&z\neq 1\text{ and }y\neq 0\text{ and }w\neq 1\text{ and }z>0\text{ and }w>0\\x\neq 0\text{, }&\left(z=1\text{ or }y=0\right)\text{ and }z>0\text{ and }w=1\\x\in \mathrm{R}\text{, }&z=-1\text{ and }w=-1\text{ and }Denominator(\frac{y}{x})\text{bmod}2=1\text{ and }Numerator(\frac{y}{x})\text{bmod}2=1\text{ and }x\neq 0\\x>0\text{, }&y>0\text{ and }z=0\text{ and }w=0\\x<0\text{, }&y<0\text{ and }z=0\text{ and }w=0\end{matrix}\right.
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}