跳到主要內容
對 z 微分
Tick mark Image
評估
Tick mark Image

來自 Web 搜索的類似問題

共享

\sqrt[4]{z}\frac{\mathrm{d}}{\mathrm{d}z}(z^{-\frac{1}{2}})+z^{-\frac{1}{2}}\frac{\mathrm{d}}{\mathrm{d}z}(\sqrt[4]{z})
對於任何兩個可微分的函式,兩個函式乘積的導數是下列兩者的加總: 第一個函式乘上第二個函式的導數,第二個函式乘上第一個函式的導數。
\sqrt[4]{z}\left(-\frac{1}{2}\right)z^{-\frac{1}{2}-1}+z^{-\frac{1}{2}}\times \frac{1}{4}z^{\frac{1}{4}-1}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\sqrt[4]{z}\left(-\frac{1}{2}\right)z^{-\frac{3}{2}}+z^{-\frac{1}{2}}\times \frac{1}{4}z^{-\frac{3}{4}}
化簡。
-\frac{1}{2}z^{\frac{1}{4}-\frac{3}{2}}+\frac{1}{4}z^{-\frac{1}{2}-\frac{3}{4}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
-\frac{1}{2}z^{-\frac{5}{4}}+\frac{1}{4}z^{-\frac{5}{4}}
化簡。