解 y (復數求解)
y=-\tan(-2x)
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}
解 x
x=\pi n_{4}+\pi +\frac{1}{2}arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})\text{, }n_{4}\in \mathrm{Z}\text{, }\exists n_{43}\in \mathrm{Z}\text{ : }\left(n_{4}>-\frac{1}{4}+\left(-\frac{1}{2}\right)\pi ^{-1}arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})+\frac{1}{2}n_{43}\text{ and }n_{4}<\frac{1}{4}+\left(-\frac{1}{2}\right)\pi ^{-1}arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})+\frac{1}{2}n_{43}\right)
x=\frac{1}{2}\pi +\frac{1}{2}arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})+\pi n_{23}\text{, }n_{23}\in \mathrm{Z}\text{, }\exists n_{43}\in \mathrm{Z}\text{ : }\left(n_{43}<\pi ^{-1}arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})-\frac{1}{2}+2n_{23}\text{ and }n_{43}>\pi ^{-1}arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})-\frac{3}{2}+2n_{23}\right)
解 y
y=\tan(2x)
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}
圖表
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}