解 x (復數求解)
\left\{\begin{matrix}x=\frac{\pi y\left(e^{i\theta +1}+e^{-i\theta +1}\right)}{2\sin(\theta )}\text{, }&\nexists n_{3}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{3}}{2}\text{ and }e^{i\theta +1}+e^{-i\theta +1}\neq 0\text{ and }y\neq 0\\x\neq 0\text{, }&\left(e^{i\theta +1}+e^{-i\theta +1}=0\text{ or }y=0\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
解 y (復數求解)
\left\{\begin{matrix}y=\frac{2x\sin(\theta )}{\pi \left(e^{i\theta +1}+e^{-i\theta +1}\right)}\text{, }&\pi \left(e^{i\theta +1}+e^{-i\theta +1}\right)\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 0\\y\in \mathrm{C}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{ and }\pi e^{i\theta +1}+\pi e^{-i\theta +1}=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 0\end{matrix}\right.
解 x
\left\{\begin{matrix}x=e\pi y\cot(\theta )\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\left(\theta >\frac{\pi n_{3}}{2}\text{ and }\theta <\frac{\pi n_{3}}{2}+\frac{\pi }{2}\right)\text{ and }y\neq 0\\x\neq 0\text{, }&y=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
解 y
y=\frac{x\tan(\theta )}{e\pi }
\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 0
圖表
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}