解 x (復數求解)
x=10^{\left(-2i\right)\ln(iy+\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+4\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }Im(\ln(10^{\left(-i\right)\ln(iy+\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+2\pi n_{1}}))+\ln(10)Re(\ln(iy+\left(1+\left(-1\right)y^{2}\right)^{\frac{1}{2}}))=0
x=10^{\left(-2i\right)\ln(iy+\left(-1\right)\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+4\pi n_{2}}\text{, }n_{2}\in \mathrm{Z}\text{, }Im(\ln(10^{\left(-i\right)\ln(iy+\left(-1\right)\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+2\pi n_{2}}))+\ln(10)Re(\ln(iy+\left(-1\right)\left(1+\left(-1\right)y^{2}\right)^{\frac{1}{2}}))=0
解 y (復數求解)
y=\sin(\log(\sqrt{x}))
x\neq 0
解 y
y=\sin(\frac{\log(x)}{2})
x>0
圖表
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}