因式分解
\left(x-7\right)\left(x+5\right)x^{2}
評估
\left(x-7\right)\left(x+5\right)x^{2}
圖表
共享
已復制到剪貼板
x^{2}\left(x^{2}-2x-35\right)
因式分解 x^{2}。
a+b=-2 ab=1\left(-35\right)=-35
請考慮 x^{2}-2x-35。 分組對運算式進行因數分解。首先,運算式必須重寫為 x^{2}+ax+bx-35。 若要取得 a 和 b,請預設求解的方程式。
1,-35 5,-7
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為負數,負數具有比正數更大的絕對值。 列出乘積為 -35 的所有此類整數組合。
1-35=-34 5-7=-2
計算每個組合的總和。
a=-7 b=5
該解的總和為 -2。
\left(x^{2}-7x\right)+\left(5x-35\right)
將 x^{2}-2x-35 重寫為 \left(x^{2}-7x\right)+\left(5x-35\right)。
x\left(x-7\right)+5\left(x-7\right)
在第一個組因式分解是 x,且第二個組是 5。
\left(x-7\right)\left(x+5\right)
使用分配律來因式分解常用項 x-7。
x^{2}\left(x-7\right)\left(x+5\right)
重寫完整因數分解過的運算式。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}